The evolution of worlds from nebulae

By Lee Parker Dean

The Project Gutenberg eBook of The evolution of worlds from nebulae
    
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

Title: The evolution of worlds from nebulae


Author: Lee Parker Dean

Release date: December 2, 2023 [eBook #72286]

Language: English

Original publication: Bridgeport: The Marigold Printing Company, 1894

Credits: Bob Taylor, Charlene Taylor and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive/American Libraries.)


*** START OF THE PROJECT GUTENBERG EBOOK THE EVOLUTION OF WORLDS FROM NEBULAE ***




  Transcriber’s Note
  Italic text displayed as: _italic_




  THE
  EVOLUTION OF WORLDS
  FROM NEBULAE

  BY
  LEE PARKER DEAN.

  Who formed the countless worlds on high,
    Who gave to them their speed,
  Who keeps them all within their bounds,
    Who guides each fiery steed;
  Who plans for them their distances,
    Moves them in mighty space,
  Revealing wisdom and not chance;—
    Whose hand but God’s there trace?
  For what seems chance at simple gaze
    The impress bears of thought,
  When studied close in all their ways
    Worlds cannot spring from naught.

  BRIDGEPORT, CONN.:
  THE MARIGOLD PRINTING COMPANY.
  1894.




  Copyright.
  LEE PARKER DEAN.
  1894.


TO THE LOVED PARENTS AND AUNT WHO WATCHED OVER US IN THE DAYS OF OUR
CHILDHOOD, AND ARE NOW CHANGED FROM MORTAL TO IMMORTAL, THIS VOLUME IS
AFFECTIONATELY INSCRIBED.

  L. P. D.




TO THE READER.


THE AUTHOR SENDS OUT THIS LITTLE BOOK FEELING THAT IF THEREBY HE HAS
MADE MORE CLEAR THE UNSEEN HAND THAT EVOLVED AND STILL CONTROLS THE
UNIVERSE HE WILL BE AMPLY REWARDED.

  L. P. D.

BRIDGEPORT, JUNE, 1894.




THE EVOLUTION OF WORLDS FROM NEBULAE.




INTRODUCTION.


The theory of world-formation as conceived by the Nebular hypothesis
has been briefly stated by Dr. H. W. Warren in the following words:
“All the matter composing all the bodies of the sun, planets, and their
satellites, once existed in an exceedingly diffused state; rarer than
any gas with which we are acquainted, filling a space larger than the
orbit of Neptune. Gravitation gradually contracted this matter into
a condensing globe of immense extent. Some parts would naturally be
denser than others, and in the course of contraction a rotary motion,
it is affirmed, would be engendered. Rotation would flatten the globe
somewhat in the line of its axis.

Contracting still more, the rarer gases, aided by centrifugal force,
would be left behind as a ring that would ultimately be separated, like
Saturn’s ring, from the retreating body. There would naturally be some
places in this ring denser than others; these would gradually absorb
all the ring into a planet, and still revolve about the central mass,
and still rotate on its own axis, throwing off rings from itself.

Thus the planet Neptune would be left behind in the first sun-ring,
to make its one moon; the planet Uranus left in the next sun-ring;
and so on down to Mercury. The outer planets would cool off first,
become habitable, and, as the sun contracted and they radiated their
own heat, become refrigerated and left behind by the retreating sun.
The four great classes of facts confirmatory of this hypothesis are as
follows: 1st. All the planets move in the same direction and nearly in
the same plane, as if thrown off from one equator; 2d. The motions of
the satellites about their primaries are mostly in the same direction
as that of their primaries about the sun; 3d. The rotation of most
of these bodies on their axes, and also of the sun, is in the same
direction as the motion of the planets about the sun; 4th. The orbits
of the planets, excluding asteroids, and their satellites, have but a
comparatively small eccentricity; 5th. Certain nebulae are observable
which are not yet condensed into solids, but are still bright gas.”[1]

The nebular hypothesis above stated was advanced by astronomers
early in the eighteenth century, and later established by Laplace on
a mathematical basis, who at the same time advocated the theory as
materialistic. It is accepted quite generally by astronomers at the
present day, though in a greatly modified form; for there are many
difficulties in the way of a full belief of the theory. Sir Robert
Ball in a late work says of Herschel’s belief of the transmutation of
nebulae into stars; “To establish this theory it would be necessary
to watch the actual condensation of one single nebula from the
primitive gaseous condition down to the stellar points. It may easily
be conceived that such a process would require a vast lapse of time,
perhaps enormously greater than the period between the invention of the
telescope and the present moment. It may at all events be confidently
asserted that this condensation of a nebula into a star is a process
which has never been witnessed.” Concerning the theory of Laplace
he tells us that it is “almost incapable of receiving any direct
testimony;” and gives as the verdict of science, the words of Newcomb;
“At the present time the nebular hypothesis is only indicated by the
general tendencies of the laws of nature.”

According to this theory,—if all the planets are of the same substance
as the earth on which we live, and of the greater sun from which they
have ages since been separated,—there must once have been material
heavy as rock and earth after condensation, filling the space around
our sun in every direction for 3,000 millions of miles. If we could
learn _how_ this material of fire-mist originated we could better
understand the mystery of world-making. A theory that would explain the
formation of our own solar system should explain the formation of all
the suns in space, a state of fire-mist for one implying the same for
all. Let us consider whether there may not be other explanations of the
phenomena in question fully as credible as the one given, and quite as
consistent with all the known laws of nature.




CHAPTER I.

EXPANSION AND CONTRACTION.


1st. _Expansion._ It is supposed by the nebular hypothesis that the
planets were all formed from rings of condensing vapor thrown off from
a contracting sun which once filled space to, and beyond, Neptune’s
distance. Let us imagine them again expanded to a like dimension,
or even greater, reaching half way to the next nearest sun, Alpha
Centauri, whose distance from our sun is computed as about twenty
trillions of miles. Assuming this to be the true distance there could
be placed between the two stars fifteen septillions of suns, each with
a diameter of 800 thousand miles. Were it possible to expand the earth
a million and a quarter times its present size, that is as large as
the sun now is, it would then be but one fifteen-septillionth the size
necessary to fill the space between the sun and Alpha Centauri. What
we know of earth, air, water, rocks, and the metals would not lead us
to suppose that these substances could be increased by expansion even
a million of times. Could there be such an expansion they would then
exist as mere atomic particles of dust incapable of holding heat with
the outside element space 300° below zero. Nearly all known substances
expand on being heated, though not often to any great extent; as,
for example, iron and the metals. But anything that is greatly
expanded cools rapidly. Then may we suppose that earth to-day could be
expanded into a body large enough to fill the great space it must once
have occupied in the state of fire-mist claimed for it? or, if thus
expanded, that it would take one year, or even one day, to cool such a
body?

We have seen thus how improbable it is that the earth could be expanded
to fill the space it must once have occupied according to the nebular
theory; and as we imagine the denser any volume is the more it will
expand can we suppose the other planets, with a volume thousands of
times greater than that of earth but a density not averaging one-fourth
as much, will expand to a greater degree? Were they all ground to the
finest dust, even like the atoms we detect floating in the sunbeams,
they would no more than fill a globe, with the sun for its centre,
whose circumference reached out to Neptune.

2d. _Contraction._ It is thought by many that the sun obtains its heat
by the contraction of its diameter, and that at the rate of two hundred
and twenty feet per year, or four miles a century. Before contraction,
then, both the sun and the earth must have been much larger and
consequently nearer each other than they are as seen to-day. If the
sun’s diameter contracts four miles during a century, to increase its
size so as to carry it out to Neptune, 3,000 millions of miles distant,
would take 1500 million centuries. But that the sun thus receives its
heat is a supposition; for how can any one tell that it contracts
each century two miles on its radius, when a second represents four
hundred and fifty miles, and two miles would be but one-two hundred and
fiftieth part of a second?

Should the earth be cooling by expending more heat than it receives,
as some claim, it should contract from the loss of heat as well as the
sun. But if earth does thus contract it must be smaller than formerly,
the sun must have less hold upon it, and with a varying gravitation,
must lose its delicate balance.[2] Yet what proof have we that earth is
to-day smaller than it was two thousand years ago?

Further, we find that the more a body contracts the faster it revolves.
The sun now revolves in twenty-five days, but when eight million times
larger and extended out as far as earth, it must have revolved very
slowly; hence with a slow revolution, and at the same time having only
four cubic rods of hard substance out of every thirty-three millions
of cubic rods, or one cubic mile,—for earth has contracted to one
eight-millionth part of the size it then was,—why did not the rocky
substance settle to the sun’s centre instead of being thrown off to
form earth, especially as the sun’s gravitation was so great at its
surface?

Professor Ball tells us that in gaseous bodies the loss of heat
involves a corresponding contraction of the volume, attended with a
rise of temperature. To quote his words: “As the temperature of the
mass increases the rate at which it parts with heat also increases.
The contraction of the volume will proceed at an accelerated pace, and
the temperature rise with increasing rapidity. Though the temperature
of the gas may at first have been extremely low it will gradually
rise until it becomes sufficiently high to render the gas visible by
actual incandescence. As the process advances still further the body
may pass from a mere nebula into a star-like object. With increase
of contraction the pressure also increases and materials which were
originally gaseous will assume more and more a density resembling
that of solid bodies.” He says further that should the sun contract
into a globe less its present size by one ten-thousandth part of
its diameter it would amount to a shrinkage in its diameter of 87
miles. “But,” he continues, “on so mighty a globe this alteration is
relatively insignificant; indeed no measurements that could be made at
our observatories would be sufficiently delicate to detect a change of
this magnitude. Helmholtz has, however, shown that if the sun were to
undergo even this small diminution of volume the quantity of heat that
would be thereby liberated for the purposes of radiation would supply
the sun’s current rate of expenditure for nearly 2000 years. We have no
means of knowing at present whether the actual contraction of the sun
takes place at this rate or any other rate.”[3]

Thus we see astronomers admit that a contraction of merely four miles
of the sun’s diameter would be sufficient to supply its heat for a
century, while a contraction of 87 miles, or 1/10,000 part of its
diameter, would give to it heat for twenty centuries, were the sun
gaseous. This being the case how is it possible to detect in this
century, with a contraction of but four miles, whether the sun is
growing either larger or smaller, or in any wise changing its volume?

When its diameter was twice as large as now it must have been so
much cooler that it moved more slowly and radiated less heat. With
a diameter of 10 millions of miles, of 100, 1,000, 3,000, or 6,000
millions of miles even, and the sun then more years than it is now days
in turning, can we suppose that it revolved swiftly enough to throw off
rings; or, with a surface so expanded, was possessed of heat to any
great amount? These are thoughts that should be carefully considered in
looking at the theory of the formation of worlds from nebulae; for any
explanations concerning the existence of a fire-mist so extensive as
to reach Neptune’s bounds are of no small consideration, and should be
open to careful scrutiny before absolute acceptance.

[Illustration: Decoration]


FOOTNOTES:

[1] Warren. “Recreations in Astronomy,” p. 182.

[2] “Laplace has given us proof that the period of the earth’s axial
rotation has not changed 1-100 of a second of time in two thousand
years.”

  Warren. “Recreations in Astronomy,” p. 145.


[3] Ball. “In Starry Realms,” p. 31.




CHAPTER II.

DENSITY AND GRAVITATION.


1st. _Density._ The sun’s density is one-fourth that of earth, while
Mercury’s is one-fifth greater than earth’s, showing that Mercury’s
substance must be more than five times denser than the sun’s, whereas
it is not 36,000,000 miles distant from it; so near, in fact, and so
recently thrown off from the sun as to be thought that human beings
could not live upon it. Why is it that this dense substance did not,
while a portion of the sun, sink to its centre?

It might be said that on cooling, after being thrown from the sun, the
body became more and more dense, the same as is said of earth. But if
so why is it that Neptune, seventy-five times farther from the sun, has
a density only one-fifth that of earth, and Uranus but a little more;
while Jupiter’s density is less than the sun’s, and Saturn’s not even
one-seventh that of earth? All of these planets lie in an immensely
cold and far away region and were thrown off by the sun, if at all,
many years before Mercury, and, according to the supposed theory,
should be cold bodies.

Some think, with apparent show of reason, that before planet-making
began the heavier materials of the general mass had gravitated toward
the centre, while the lighter substances remained near the surface.
“If so,” to quote the words of Prof. Winchell, “the first planets
separated would contain more of the substances which, at temperatures
familiar to us, make gases and water. Similarly, the later planets
disengaged would acquire a large proportion of the substances which
form solid rocks. In the case of the earth we may suppose that the
greater part was rock-making material, since the earth’s specific
gravity is so high; but watery stuff in sufficient amount to provide
for oceans and rains, went off with the rock-material, and with these,
the lighter stuff for an atmosphere. But in the case of Venus, most
of the stuff was rock-material, if not the whole of it; while with
Mercury it seems probable that little water-stuff was included. In the
opposite direction, Saturn, Uranus, and Neptune must have received a
large excess of water and atmospheric stuff. It is rational to suppose
that their oceans have always covered the whole land, as ours does more
than half. In fact, these bodies must be composed chiefly of water and
atmosphere; as their specific gravities are low as water and cork.”[4]

Now if this is a good explanation what shall we say of the sun from
which these planets were separated? If it grew more and more solid as
it contracted until Mercury, nearly ten times denser than Saturn, was
thrown off, why is not the sun denser than Mercury? whereas we find it
with but one-fourth the density of earth.

When the sun reached out to earth it must have had a diameter of nearly
200 million miles, but having now contracted to a diameter of less than
one million of miles, should it not have a density ten times greater
than earth’s, instead of one so much less? For if the solid parts when
out at Neptune began to fall toward the sun’s centre, they should
have continued to fall until they reached it, or until they had met
a density greater than their own. We must remember even at the sun’s
present surface a body would fall with much greater velocity than on
earth’s surface because of its greater weight. With the density of our
earth more than five times that of water, and twice that of solid rock,
all heavy substances must gravitate toward its centre; whereas on the
surface of the sun the gravitation is more than 27 times stronger. If
then the sun were ever a fire-mist reaching out to earth, it would
seem that nothing should have prevented the earth from falling with
lightning-like speed to the sun’s centre, as its volume was 8,000,000
times larger than now, and even its present volume would hold 900
thousand worlds like ours before it would have a like density.

2d. _Gravitation._ We see the sun to-day as a perfect sphere, but does
a body that is a sphere ever throw off rings by rotary movement? When a
body in its revolutions throws off rings by rotating, instead of being
spherical it is of a flattened, or grind-stone shape, and the rings are
hurled from it by the centrifugal force overpowering the gravitation;
hence we cannot think that the sun’s rings,—being of enormous
circumference and necessarily of a light or fluid substance in order
to be thrown off,—could form into spheres unless the centrifugal force
was extremely great.

Let us suppose that Neptune was thrown off from the sun as a ring, like
those we see around Saturn; and, as it is now about 3,000 millions
of miles distant from the sun’s centre, before it was detached it
must have had a diameter of about 6,000 millions of miles, with a
circumference of over 18,000 million miles. Now, as Neptune has about
100 times the volume of earth,[5] its ring could have been no more than
40 miles square; for 1600 square miles multiplied by 18,000 million
miles, the distance around that ring, will give more than Neptune’s
volume. How then could any substance so exceedingly thin draw to itself
this enormous distance of 18,000 millions of miles, any more than a
thread a thousand miles in length could draw itself together into a
ball, without the thread’s breaking into a million pieces?

Or, take another theory, and instead of supposing that the sun threw
off rings, suppose that its surface cooled and formed into a hard
crust. Had the inner sun then shrunk away from the outer could that
crust have ever formed into a globe that would rotate around the inner
sphere, and if not how could Neptune have been formed? Should such
a crust have extended around the sun while spread out to Neptune it
must have had a circumference of over 18,000 million miles, as did the
ring, with a surface of 108 quintillions of square miles; so the crust
could not have exceeded one-sixtieth of an inch in thickness. If, then,
Neptune’s substance in any way resembles earth’s, with a crust of that
thickness upon the sun’s surface, it must have collapsed in millions of
places instead of having broken away from the sun and formed the globe
that we now behold. Chambers tells us: “At the surface of the earth a
body set free in space falls 16.1 ft. in the first second of time, with
a velocity increasing during each succeeding second. A body similarly
set free at the surface of the Sun would start with a velocity 27.4
times as great as that of a body falling at the surface of the Earth.
This is equivalent to saying that a pound’s weight of anything on
the Earth would, if removed to the Sun, weigh more than 27 lbs. The
centrifugal force, due to the rotation of any body diminishes gravity
at its surface. At the Earth’s equator the total diminution is 1/289
part; whilst at the Sun’s equator the centrifugal force is only about
1/18,000 part the force of gravity. It would be necessary that the Sun
should turn on its axis 133 times quicker than it does, for the force
of gravity to be neutralized. In the case of the Earth, however, a
speed of rotation 17 times as great as it is would suffice to produce
the same result.”[6]

By this it is seen the centrifugal force is comparatively insignificant
with the sun revolving faster than ever before; for, on the principle
that the more a body contracts, the swifter it revolves, it must
revolve several hundred times faster now than it did when its
circumference was at Neptune’s bounds. If this be the case it is
difficult to believe there was ever a time that the sun could have been
larger than at the present, and have had centrifugal force enough to
throw off rings from its surface.

[Illustration: Decoration]


FOOTNOTES:

[4] Winchell, “Walks and Talks in the Geological Field,” p. 217.

[5] Steele’s “New Descriptive Astronomy,” p. 174.

[6] Chambers’ “Hand Book of Astronomy,” p. 6.




CHAPTER III.

THE COOLING OF THE PLANETS.


1st. If the sun was once so much greater that it reached out to
Neptune,—as it must have done if Neptune was cast off from it,—would
not its poles have flattened like those of Earth, and have cooled
first, and any matter thrown off from the globe have been at the poles?
Yet the poles of Earth seem scarcely to change as it turns on its axis,
and a body thrown off from them would not go around the planet; but,
on cooling, fall back to the liquid centre. Such being the case why
has earth a density greater than the sun, and what was the power that
kept, and still keeps it, from sinking into the sun? Knowing as we do
the power of gravitation, we should suppose these masses to be so held
that they could not escape from the sun. Saturn, with its three glowing
rings, we behold as a blazing star,[7] but why has it not cooled? The
sun must have thrown off the planet millions of years ago, for it now
lies about 900 millions of miles distant, and the contracting of the
sun on its radius would make it 450 millions of centuries since it
spread out as far as Saturn. Hence, if Earth is cold Saturn should be
the same in that far-away, colder region; and being ten times farther
from the sun than the earth, it should have been formed ten times as
long ago, according to the nebular hypothesis.

If Saturn yet throws off rings may not the sun do the same until cool
as Saturn and reduced to a like size? At the time the sun spread out
to that planet its diameter must have been 1800 millions of miles,
whereas now it is about 900,000 miles. With such a diameter shrunken
to less than one million of miles we would ask why Saturn is not yet
cool? Should we extend the sun’s diameter again to reach Saturn, it
would have, as stated, a radius of 900 millions of miles; giving 10,000
million times its present volume. By contracting the same at a like
rate it would be 450 millions of centuries ago that Saturn was thrown
off from the sun. Now, as Saturn has only 1/1700 part of the sun’s
volume, with a density much less, and lies far out in space; why in
all these millions of years has it not cooled instead of holding heat
and continuing to throw off rings? If it possesses the exceedingly
light density sometimes claimed for it,[8] and has a gravitation at its
surface but little more than that of Earth, one would suppose to find
it a much colder object than the earth.

2nd. The little planets called asteroids take somewhat the form of
a nebula and are distant from the sun from two to three hundred and
fifteen millions of miles. Yet these planets, numbering some three
hundred, do not, if taken all together, form more than one-fourth
the size of Earth, yet they must be older than either Earth or Mars,
according to the above hypothesis, and should likewise be cold.
For a time the explosion of some planet was thought to have formed
them, but the great number since discovered, and their position and
movements, give no credence to the belief that they are fragments
of a shattered planet; for Vesta as seen by the naked eye, and
Ceres and Pallas, show by their orbits that to be an impossibility.
They are now thought to have been thrown from the sun as a ring,
and that the ring, instead of forming into one planet, has been
broken up into these numberless asteroids. If this supposition be
true we should expect to find them all at about the same distance
from the sun. Instead we find that their distances vary millions
of miles, making nearly as great a difference between them as is
their distance from the sun. What, then, must that ring have been
when it is claimed that the combined mass of the asteroids would not
exceed over 400 miles! Proctor tells us: “The asteroids themselves
supply an argument in favor of the nebular theory rendering its
probability so strong as practically to amount to certainty; for
the antecedent probability against the observed uniformity of
direction of the 175 asteroids by chance, or in any conceivable
way except as the result of some process of evolution is equal to
that of tossing either ‘head’ or ‘tail’ 175 times running, or about
23,945,290,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
to 1.”[9] Notwithstanding the above statement we would argue that when
those asteroids were formed the sun must have reached out to them,
if they were cast off from it; whereas we see them distant from the
sun only from two to three hundred million miles, while Jupiter is
480 millions of miles distant from it, so that to-day the asteroids
are about as far from one as the other. How could they thus get away
from the sun’s gravitation when it is still a thousand times larger
than Jupiter and at the time they were thrown off—or _detached_—must
have been much more than that. It is claimed that Jupiter has still
great power over these asteroids, and if so the sun should have a much
greater power because of its size and proximity.


FOOTNOTES:

[7] “Saturn has a mean diameter that is about nine times that of Earth
while his volume exceeds hers more than 700 times. Within an extreme
span of upwards of four millions of miles on either side of Saturn’s
globe there circle eight satellites and two millions of worlds, the
least of which is probably as large as Mars. Then within the path of
the innermost of these moons there is the wonderful ring system of
Saturn. The span of this system of rings amounts to about 176,000
miles; that is its outermost edge lies about 88,000 miles from Saturn’s
centre, while the complete system has a breadth of 37,600 miles, but
the innermost part, to a breadth of nearly 9,000 miles is dark. Through
this dark ring the outline of Saturn’s disc can be clearly perceived.
In fact this wonderful dark ring is transparent. The bright parts of
the system form two rings, separated from each other by a dark, but not
perfectly black, circular division about 1700 miles broad.”

  Proctor, “Expanse of the Heavens,” p. 96.


[8] “Its mean density is less than that of any known planet, being less
than one-seventh of the earth.”

  Proctor, “Expanse of the Heavens,” p. 97.


[9] Proctor, “Poetry of Astronomy,” p. 366.




CHAPTER IV.

SPACE.


If all the stars that we now see in space were once fire-mist, there
must have been another region equally large filled with some substance
of a temperature 600° below zero, in order to equalize the heat of the
fire-mist and leave space 300° below zero, as it now is in the vast
region that surrounds existing stars.[10] What must that cold of 600°
have been, for what is that of 300° even when water freezes at 32°
above zero and mercury at 30° below! Where that cold space was we know
not, neither do we know what was in space before the fire-mist.[11]

If the nebular theory will sufficiently account for the throwing-off
and cooling of the planets, will it likewise account for the millions
of suns disseminated throughout space? In the first place, let us
suppose that all these suns were made at the same time and filled space
with the same substance as our earth, only in a diffused state. In
such a case I cannot conceive how it could break up and resolve into
stars, for there being no space to turn in all would revolve together.
The pulp within the rind of an orange could not be cut into circles and
caused to revolve inside of that rind; so fire-mist once filling the
immensity of space must have continued to revolve in an unbroken mass.
Secondly; If the stars were formed at different periods of time should
not many be still forming? whereas space appears wondrously clear. We
would think if all this great space were to-day filled with nebulae
composed of material similar to that of earth, we could not see; for
our vision of the heavens would be obstructed thereby, and we should
know nothing about the countless numbers of stars that, with the aid of
the telescope, now make the very heavens to blaze with light. Why is it
that the space about all, or nearly all, of the suns has thus cleared
if a state of fire-mist is common to all of them? It is true Nebulae
are seen that appear like vast fields of dim light, but they are often
resolved into stars when examined with powerful instruments, and the
nebulae that cannot be thus resolved into suns occupy but a small
portion of the heavens. Less than one cubic foot is now left out of the
147,200 millions of cubic feet in every cubic mile of fire-mist that
the sun’s sphere must have contained when it reached out to the planet
Neptune, and what has become of it all? If it is not in our system
it must have gone into others. Again; if among the stars that we now
see there are a million, or even a thousand times as many dark bodies
as luminous ones, they must in a measure obstruct the light of the
glowing suns. But were this known to be true it would not prove that
these bodies were not originally formed dark objects; and who but an
omnipotent and omniscient Ruler could prevent repeated collisions among
them?

The nebular theory accounts only for our own solar system, and yet all
the stars that we see in the heavens can be no less wondrous than our
own flaming sun. That we see their light even, at so great a distance,
is proof that they can be no less great. We must account, then, not
only for our own planetary system, but for the countless millions
that exist; and we must concede that the laws that govern one would,
presumably, govern every one. Hence, a period of fire-mist for one
implies the same for all.

If the distance from our sun to the next nearest sun is 20 trillions
of miles, a sphere whose radius reaches half way, that is ten trillion
miles, could contain eight sextillions of suns, each with a diameter
of one million of miles. Now let a single grass seed represent one of
these suns, and twenty-seven millions of them one cubic inch. Should we
fill a bin one mile long, broad, and high, with such seeds, there would
yet be more suns in the above sphere than it would take of grass seeds
to fill this bin holding seven sextillions of them. When we think that
each grass seed is to represent a sun two million times larger than our
earth,—for each sun with a million of miles diameter would,—the thought
of the contents of such a sphere is overwhelming.

Professor Mitchell tells us that with a telescope light from distant
nebulae can be seen that has been thirty millions of years on its
journey. Let us imagine a sphere with a radius of one million years of
light’s flight at the rate of twelve million miles per minute, viz.,
six quintillions of miles. A sphere of such a radius would contain
as many spheres of ten trillions of miles radius as one could put
cubic inches in 850 cubic miles, or 216,000 trillions. This sphere
could hold as many suns of one million miles diameter as there might
be grass seeds that would cover a million of earth’s for one mile in
depth, each earth containing on its surface 200 millions of square
miles, and every cubic inch thereof representing 27 millions of grass
seeds. When we think that each seed represents two millions of earths
can we comprehend the greatness of the universe? Remember the same
calculations that enable us to determine the number of cubic feet in
our earth, sun, or any other sphere, bring these astounding but certain
results. And when we further remember this space is every where so
clear and powerful that it transmits light at the rate of over eleven
million miles each minute, enabling us to see in every part of the
heavens the wonderful stars at an immense distance; and that if we
bring to our aid the most powerful telescopes they only tend to magnify
the already vast number of stars; we are led to realize that beyond
all things else we can conceive space is the most astonishing and
wonderful, excepting its great Creator. While some think that the sun
is cooling and all its planets will be affected thereby, and refer to
the destruction and instability of earthly things; where is there a
single atom of this inconceivably vast, vibratory space that reveals
the least change or destructiveness, although it must have existed for
millions of ages.

Sir Robert S. Ball has given a very marked illustration of the
wonderful magnitude of space in his late book entitled “In the
High Heavens,” from which we quote as follows: “Summon up to your
imagination the most distant star that can be seen with the unaided
eye. Then think of the minutest star that our most potent telescope
can disclose. Think of the tiniest stellar point of light which could
possibly be depicted on the most sensitive photographic plate after
hours of exposure to the heavens. Think, indeed, of the very remotest
star which, by any conceivable device, can be rendered perceptible to
our consciousness. Doubtless that star is thousands of billions of
miles from earth; doubtless the light from it requires thousands of
years, and some astronomers have said millions of years, to span the
abyss which intervenes between our globe and those distant regions.
But, nevertheless, there is a certain number of miles, even though we
know it not, at which the remotest stars known to us must lie. I do not
speak of the most distant star which the universe may possibly contain;
I only refer to the most distant star that we can possibly bring within
our ken.

Imagine a great sphere to be described with its centre at our earth,
and with a radius extending all the way from the earth to this last
star knowable by man. Every star that we can see, every star whose
existence becomes disclosed to us on our photographs, lies inside
this sphere; as to the orbs which may lie outside that sphere we
can know nothing by direct observation. The imagination doubtless
suggests with irresistible emphasis, that this outer region is also
occupied by stars and nebulae, suns and worlds, in the same manner as
the interior of that mighty sphere whose contents are more or less
accessible to our scrutiny. It would do utter violence to our notions
of the law of continuity to assume that all the existent matter in
the universe happened to lie inside this sphere; we need only mention
such a supposition to dismiss it as wholly indefensible. I do not now
make any attempt to express the number of miles in the diameter of the
sphere which limits the extent of space known directly to man. What
that number may be is quite immaterial for our present purpose. But the
point that I especially want to bring out is that the volume occupied
by this stupendous globe, which includes within it all possible visible
material, must be but a speck when compared with the space which
contains it. Think of the water in the Atlantic Ocean, and think of the
water in a single drop. As the drop is to the Atlantic Ocean so is the
sphere which we have been trying to conceive to the boundless extent
of space. As far as we know it would seem that there could be quite
as many of such spheres in space as there are drops of water in the
Atlantic Ocean.”

Now with this defining of space it is evident that it matters but
little what the material substances of the universe may be. If the
hundreds of millions of bright suns—which are thought to be few in
proportion to the invisible, dark worlds scattered throughout space—are
but as a single drop of water to all the Atlantic Ocean; then we are
compelled to admit that our earth and sun, and even the great host of
luminous orbs, must be of little consequence beside this infinitely
vaster and more intensely active ether.

It behooves us above all things, then, to inquire what this amazingly
great space may be. Let us quote further from the above author: “Every
particle of matter whether solid, liquid, or gaseous, is composed
of molecules. No doubt these molecules are so numerous that even in
the air we breathe the capacity of a lady’s thimble would contain
a multitude of molecules so great that it has to be enumerated by
billions.” Again, “The air is ultimately composed of myriads of
separate particles. Each of these little particles, no matter how
quiet the air as a whole may seem, is in a state of intensely rapid
movement. Picture to yourself incalculable myriads of little objects,
each dashing about with a speed as great as that of a rifle bullet,
and often indeed far greater. The little particles are so minute that
it would take about fifty millions of them, placed side by side, to
extend over a single inch. The smallest object which we can discern
with a microscope is perhaps one hundred-thousandth of an inch in
length. The little gaseous molecule would therefore require to possess
a diameter about five hundred times greater than that which it actually
has if it were to be large enough to admit of inspection by the utmost
microscopic powers which we can bring to bear upon it. And yet,
notwithstanding the fact that these particles are so extremely minute,
we are able to reason about their existence, to discover many of their
properties, and to ascertain the laws of their action in such a way as
to throw light into many obscure places of nature. I do not, indeed,
know any doctrine in modern science of a more instructive character
than that which teaches us the composition of gases.” If this be true
of air what then can be said of space, or ether, in which all worlds
float as easily as the motes in a sunbeam; that space which transmits
light everywhere with a precision that never varies? And what is light,
indeed, but vibrations of ether from 400 trillions to 800 trillions
per second, giving all the colors from violet to red? There is not an
atom of ether in all space, so far as science can detect, that has ever
ceased to vibrate, or ever will, with the startling rapidity above
expressed.

But, to further illustrate the magnitude of space, let us again take
the flight of light as a basis for our calculations. As there are
525,600 minutes in a year, light—moving at the rate of eleven millions
of miles each minute—must travel in one year 5,781,600 millions of
miles. With that number of miles as radius of a sphere, of which earth
is the centre, the diameter will be 11,563,200 millions of miles, and
the surface of the sphere 401,112,000 quintillions of square miles,
while it will possess a volume of about 800 undecillions of cubic
miles. Dividing this number by the 260,000 millions of cubic miles
that earth contains we have 3,000 septillions, the number of earths
that such a sphere could contain. Now in an ocean 5,000 miles long,
3,000 miles broad, and 3 miles deep there will be 45 millions of cubic
miles, or 250 trillions of inches. Allowing 200 drops of water to
each cubic inch, we have in one cubic mile 50 quadrillions of drops,
and in that ocean 2,250 sextillions of drops of water. Dividing 3,000
septillions—the number of earths in the above sphere—by the number of
drops of water in the ocean, we find we would need 1300 such oceans
to furnish enough drops of water to equal the number of earths that
could be placed in a sphere whose radius is but the number of miles
that light travels in a single year. With a radius equal to one hundred
years of light’s flight a sphere might contain as many earths as there
would be drops of water in 1300 millions of such oceans; while a radius
of light’s flight for 100,000 years could hold as many earths as there
were drops of water in 1300 quadrillions of such oceans, or a number
of oceans equalling the drops of water in 26 cubic miles. Again, in
a _million_ years of light’s flight there might be as many earths as
drops of water in 1300 quintillions of such oceans, or the number of
oceans equalling the drops of water in 26,000 cubic miles.

If a sphere with a radius of light’s flight for but one year could
contain 3,000 septillions of bodies like our earth, and yet that
sphere be but an atom in space, it would seem that space might be
_infinite_ in its extent, with our conception of infinity. But if
space is _finite_ and light, after a flight of a million of millions
of years, reaches its utmost bound; then that light, if still existing
and radiating 400 trillions of vibrations each second, can double that
time and return. For if not cooled in a million of millions of years
the supposition is that it will not cool in twice that time.

Still, again, let us conceive of a sphere, but this time with a
radius—not of _ten_ millions of years of light’s flight, which would
contain as many earths as drops in 1300 quintillions of such oceans, a
number equalling more than half the drops in an ocean that contained
45 millions of cubic miles—but we will take less than ten minutes of
light’s flight with a radius of 100 millions of miles, which is a
little more than the distance from the earth to the sun. We find that
this sphere would contain 15 trillions of earths; a number ten thousand
times greater than that of all the people living upon earth. When we
think that each one of those earths would contain 260,000 millions of
cubic miles it is seemingly all that our minds can well grasp.

We may not know how many millions of years each atom of ether has been
in existence, but probably before any worlds ever floated within it;
and how can we conceive the thought of death in this immensity of space
where there is not the slightest indication of subsidence or decay? We
must remember that this ether is a million times more active than air
and possesses energies that we cannot conceive of in the more solid
substances of the spheres. Then, whether the nebular hypothesis of the
cooling of the sun and worlds be right or wrong, we may not detect it
from any evidence that space gives thereof; and we can but believe
that, if it be a fact, it must be so only because He who formed this
wondrous space has in their destiny an object. The Eternal Presence
may give to this vast, eternal space a glow that needs not the light of
sun, moon, or the shining host of stars, even though all these mighty
orbs that we now behold should be plunged into everlasting darkness.

In order to better comprehend the mighty vastness of this space we
will measure it again into units of 260,000 millions of cubic miles,
(the size of earth), and with a radius based on the number of miles
of light’s flight in minutes, days, months, and years, ascertain the
number of different sized spheres that such radii would form. A sphere
with earth as its centre, and a radius of one minute of light’s flight,
would contain 21 billions of earths; a sphere whose radius was _nine_
minutes would contain 15,310 billions of earths, one of an hour’s
radius 4,500 trillions, one of a day’s 62 quintillions, a week’s 20
sextillions, a month’s 1675 sextillions, and a year’s radius of the
flight of light three octillions. To go still further; 10 year’s radius
of light’s flight would contain three nonillions, 100 year’s three
decillions, 1,000 year’s three undecillions, 1,000,000 year’s three
quattuordecillions, and a thousand million years radius would contain
three septendecillions of such earths. Now to compare these great
numbers we will suppose, as before, that there are 200 drops of water
in one cubic inch, making 50 quadrillions of drops in one cubic mile of
water, 50 quintillions in one thousand cubic miles, 50 sextillions in
one million of such miles, 50 septillions in one thousand millions, and
50 octillions in one million millions of cubic miles.

We need go no further for the immensity of space is seen by comparison
of the earths in the above spheres with the number of drops of water in
all those cubic miles. We find the sphere that has but one day’s flight
of light as a radius will contain more earths of 260,000 millions of
cubic miles each, than there are water-drops in 1,000 cubic miles; or,
in other words, as many drops as there would be in 100 Sounds like Long
Island from Bridgeport to New York, allowing those sounds to average
100 feet in depth and each contain ten cubic miles of water.

The thought so astounding and well nigh inconceivable is that a sphere
of such vast dimensions has only a radius of a single day’s flight of
light, light that starting from its centre would pass the circumference
of the sphere in one day; while a sphere with a radius of _ten_ year’s
flight of light—a distance only a little way beyond the nearest known
star in the northern heavens, 61 Cygni—could contain as many earths as
there are drops in 60 millions of millions of cubic miles. Yet a sphere
with that radius of ten year’s flight would cover such an enormous
quantity of space as to be beyond our comprehension and still be of
no consequence in comparison with the spheres of one hundred, one
thousand, one million, or one thousand millions of years radii.

Why I thus compute 1,000 millions of years of light’s radius is
because it is possible with powerful telescopes to detect light coming
that distance; and when we contemplate that our nearest star, Alpha
Centauri, is twenty trillions of miles distant, and 61 Cygni more than
twice as far,—or _seven_ year’s flight of light,—and that the Polar
star is some fifty years of light’s flight removed from us; then, if
all suns are no nearer to each other than these are to our sun, we are
led to believe we may see light with our unaided vision that has been
on its journey for a million years. Some detect with the naked eye the
light that comes from the nebula in the Sword’s-Handle of Orion, which
is thought to contain two trillions, two hundred billions of stars;
and if all these stars are no nearer to each other than Alpha Centauri
is to our sun, it cannot be otherwise than that some of them are so
distant their light may have been travelling for a million years before
it comes to our sight. If this be true, with telescopes that penetrate
a thousand times farther into the heavens, we may possibly see light
that has been on its voyage to earth one thousand millions of years.
But the number of earths a sphere of 1,000 millions of years of light’s
flight would contain makes the number of drops of water in sixty
millions of millions of cubic miles (equalling but the earths in a
sphere of _ten_ years radius) sink into utter insignificance. And yet a
sphere of this dimension, even, may be small beside the whole universe
of ether whose every atom in all the millions of years past, as far
as known, has not in the least diminished its wonderful energy; and,
with lightning-like transmission, still brings to our sight light from
distant stars, all of which are so distant that they do not materially
increase the present flow of light. For if but a single one were to
come between us and the sun the increase of that light and heat would
be unendurable.

Finally, as space thus surpasses everything in its greatness excepting
its Creator, let us contemplate it once again in the following manner.
Suppose we could create 40,000 millions of cubic miles of ether daily;
we would at the end of the week have an amount equalling the volume
of our earth. If we continued that creation daily,—not for hundreds,
thousands, or millions of years even,—but for 1,000 millions of
millions of years, we should then have as many such volumes of ether
the size of earth as there are drops of water in one cubic mile. But
what of all this? Admitting that we could create bodies as fast as our
earth was made, and continue to do so for 1,000 millions of millions
of years, it would still be of little account; for its insignificance
is seen when we remember it is but one-fifty-eight thousand millionth
part of what a sphere would contain with a radius of one year’s flight
of light. To think of 40,000 millions of cubic miles being created
daily, with the process continued for 1,000 millions of millions of
years, and _that_ vast quantity still further expanded 58,000 millions
of times, would seem the extent of greatness itself and beyond all
human realization. Yet we can still say all this would be of slight
consequence, for it represents a sphere whose radius is but one year
of light’s flight, and that sphere compared to one of 1,000 millions
of years radius is no more than a boy’s marble,—with a radius of but
one-fourth of an inch,—to earth whose radius is 4,000 miles, and a
thousand million times larger than the radius of the marble.

We have endeavored by the above comparisons to show the vastness of
space; and although our efforts must be in vain because of our inability
to comprehend such great figures, still it is pleasant to contemplate
this ether, upon which time has so little effect, because man is mortal
and the 1500 millions of people that pass from earth every 33 years
makes it seem to him that death reigns everywhere. But when we consider
that the only things essentially effected by time are the animal and
vegetable kingdom, and that all men now living could occupy about
one-fifteenth of one cubic mile of earth; we see that death, even in
the animal kingdom, is confined to a few cubic miles, and to but a few
more in the vegetable kingdom. The inconceivable millions of millions
of cubic miles in a sphere with a radius of one million years of
light’s flight is in no manner affected, as we perceive, by the dread
power that we recognize in the dissolution of mortal bodies.

Even these bodies, as we understand, are changed only in the
combination of molecules, and by that change the immortal spirit,
that is as imperceptible as the wind, of which we are told we cannot
tell “whence it cometh nor whither it goeth,” is set free; the Bible
teaching us its eternal destiny. The greatest and best things that men
here possess are love and goodness, and should not the Almighty possess
these virtues beyond any of His creatures? Possessing these how could
He otherwise than send to Earth His Son for their salvation from sin;
for we find men here, even, who are willing to peril their lives for
the salvation of their fellows, and would undoubtedly be kind to an
inferior animal, though an ant or worm, had they created it and knew it
loved and worshiped them. Akin to this, we believe, is man’s relation
to his Creator and the Creator of this mighty and seemingly everlasting
Space.

[Illustration: Decoration]


FOOTNOTES:

[10] For example: Take two rooms and heat one as hot as the sun now is
what must the cold in the next room be to equalize the heat to 300°
below zero?

[11] We do not inquire how the original nebula came into being; our
history must commence with the actual existence of this nebula. There
is, let it be confessed, a great deal of obscurity still clinging to
the subject. Though we may be sure, that the great nebula once existed
we cannot with much confidence trace out the method by which the
planets were actually formed.

  Sir Robert Ball, “In Starry Realms,” p. 348.




CHAPTER V.

THE EARTH’S CRUST.


Were earth’s crust no thicker in comparison than the skin of an apple
or peach, or 1/100 of its radius even, still man has never penetrated
to one-twentieth of that depth; for I know of no place where he has
as yet reached one mile below earth’s general level, unless it be in
ocean-soundings. In most places the mines or gorges have been in the
mountains high above the valleys, consequently we know little of what
is far beneath the earth’s surface. How could we judge of the inside
of nuts, fruits, grains, or vegetables if we had penetrated to but
one-twentieth of their coverings?

Take, for instance, a chestnut that all boys are familiar with, and see
what we may learn from it. We find that it is covered with a tough,
brown shell which in turn is enclosed in a large prickly burr ten times
the size of the nut. This protects it until ripened and then opens to
let the nut fall. The burr is fastened to a large forest tree whose
roots are deep in the ground; a tree that had been growing for years
before the chestnut was produced, and first started from another nut
of its kind. From the time its growth began there was nothing in root,
trunk, limb, or leaves for years that in any way resembled a chestnut;
nor in the blossom or burr even, until the nut ripened and fell to the
ground. Could one think, who had never before seen the nut, that from
such a tree a chestnut could be produced?

The same is true of all manner of nuts, fruits, and vegetables. It is
even true of animals, for they are enclosed in such varied coverings
that their nature is often quite concealed from us. We may as well
believe there is something in earth’s interior, away from winds and
cold, as precious over and above its crust as the chestnut is better
than the burr that encloses it; the fruit better than its rind; or
fish, birds, and animals better than their skins. Knowing this, man,
while he would grasp the greatness of the universe, may somewhat
under-rate the contents of his own earth.

Dr. Winchell in speaking of cold has said; “It has been demonstrated
that an ice-cap resting several thousand years over any considerable
portion of the surface would so reduce the subjacent temperature of
the earth that for many centuries after the disappearance of the ice,
a decrease of temperature would be discovered in penetrating downward.
Even centuries later, so much cold would still remain within the earth,
that the rate of increase of temperature would be less than if the
ice-cap had not existed; and after 3,600 years, that rate would be only
half the normal rate.”[12]

Now if the earth’s crust will thus retain the cold why may it not as
well retain the heat? In that case any excess of heat escaping from
earth, over and above the heat it constantly receives from the sun,
may be readily accounted for. It is claimed that the earth has large
quantities of sunlight and heat stored in a liquid state, as petroleum;
in a gaseous state, as natural gas; and in a solidified form, as coal;
some of which are found at a depth of 1600 or more feet, although coal
is sometimes found near the surface, and even upon the mountains. If
these are all stored sunlight, why do they not accumulate over earth’s
entire surface as well as in certain localities,—especially in the
torrid zone where great heat exists,—and accumulate to-day as well as
in former ages?

When we remember that the Mesozoic aeon was preceded by the long
Palæozoic, and earlier by the Eozoic,—whose aeon has been laid down
at eleven million years, with a strata at least 50,000 feet thick of
hardest rock,—what could have been the cause of the submerging of the
lands where these gases and coal lay? For millions of years the Eozoic
strata had upheld the oceans that were two or more miles in depth, and
of enormous weight. If the earth was cooling all those years the crust
must have been hardening, and what added weight could have been at
so late a period to cause the submerging of those lands? It has been
thought that in the glacial period when the accumulation of ice over a
portion of earth’s surface lay 5,000 feet thick that its weight might
have depressed the terrestrial crust.[13] But ice being lighter than
water, even though it were of that thickness, would not have had the
weight of water a mile in depth; whereas more than twice that depth of
water rested upon three-fourths of the globe. Moreover the ice-period
was many millions of years later than the Palæozoic and Eozoic ages,
and had the earth all this time been growing colder its crust must have
been thickening, making it capable of enduring almost any pressure. Any
crust, as ice upon water or the shell upon an egg, will bear more than
its whole weight before it will sink into the substance upon which it
rests.

It might be thought that earth, while cooling, would shrink beneath its
crust and leave a vacuum, as ice sometimes does upon a small surface.
This could not happen as the vast surface of extended crust, by the
enormous pressure of air upon it, would be held closely pressed to
whatever was beneath. For, although earth’s surface is convex, it is
still 25,000 miles around it, a distance so great that its crust would
have almost the same pressure as if the surface were level.


FOOTNOTES:

[12] Winchell, “Walks and Talks in the Geological Field,” p. 99.

[13] Winchell, “Walks and Talks in the Geological Field,” p. 275.




CHAPTER VI.

THE EARTH’S HEAT.


That the heat of the earth increases as we penetrate its surface has
been learned from mining, tunneling, and the boring of wells. Yet on
testing the wells they do not seem to show any uniform temperature.
The deepest Artesian well is in St. Louis and has a depth of 3,843½
feet, while its water is found to be of a temperature of 105°.[14] This
would seem to indicate that the earth is hotter as we descend into
it; still, there may be reasonable causes therefore without its heat
extending after all to any great depth. When we remember that the earth
is 4,000 miles from surface to centre we find that this deep well is
not even 1/5000 part of the distance, and what may be in the interior
of the earth is yet quite uncertain. It may possess elements, that from
earth’s swift revolutions on its axis, and far swifter flight through
space, would supply any loss of heat over and above what is received
from the sun. Heat may also penetrate earth’s surface more easily than
it escapes, for earth is surrounded by an atmosphere that receives
the sunlight readily, but not so readily lets it go; and prevents the
outside cold of 200° below zero from falling upon it nightly.

Further it is said, with seeming reasonableness; “No rock has the
requisite rigidity to resist the crushing weight of a mountain twenty
miles high.” Whatever movements may take place in the earth’s crust,
involve masses so great and forces so enormous that the resistances
of ordinary matter are inconsiderable. The most solid rocks are
essentially fluid or viscid. Now, such movements must necessarily
result from two causes: First, a slow shrinkage of the earth through
loss of heat; secondly, the attraction of the sun and moon, which cause
tidal protuberances on the surface of the earth, however rigid it may
be; and these, continually shifting their positions, as the oceanic
tides do, result in daily motions adequate to develop a large amount of
frictional heat.[15]

This last occasioning of heat we would especially notice, and,
perhaps, amply account for the present known heat. If at the bottom
of said Artesian well, two-thirds of a mile deep, the temperature is
105°, why is it at the bottom of the ocean, five miles toward earth’s
centre, that the water is ice cold? It is admitted that the question
concerning internal heat is imperfectly understood. “We neither know,”
says Professor Winchell, “at what depth it exists, at what ratio it
increases, nor what is its cause or source. Nor do we know whether the
deep interior is in a solid or a liquid state. Assuming the rate of
increase to be one degree for 60 feet of descent, we should obtain,
in the latitude of New York, heat enough to boil water at a depth
of about 9,000 feet.” We note that in proportion to the depth of the
well it should have a temperature of at least 500°, or a heat that
would cause the waters of the ocean overlying three-fourths of earth’s
surface to boil; especially in deep waters where there is but little of
earth’s sediment, and where its crust must be necessarily thinner than
the elevated land.

Again; We are told that the moon is scarred all over with volcanic
craters, some of which are 100 miles in diameter; but what volcanic
crater on earth could be detected 240,000 miles away by any telescope
that magnified 1,000 times, or even be seen by the naked eye at a
distance of 240 miles? There are, to be sure, at the present day
volcanoes that give evidence of great internal heat, as Etna and
Vesuvius. These compared to earth’s vast surface of 200 millions of
square miles, and vaster volume, would be no more than a burning leaf
in a forest of trees. The many extinct ones show it must have been the
same in past ages, but how soon these are seized upon by vegetation
and hidden from view! We are told that masses of lava are very poor
conductors of heat and have been found burning a century after their
eruption.[16] This being the case how long might heat be imprisoned
in earth, when it has been stated that cold might not all escape in
7,000 years? May not this imprisoned heat be the source of the escaping
of any excessive heat over and above that which earth has received;
and all these volcanoes—and the hot springs as well—be caused by
smouldering under-ground fires of liquid, gaseous, or solidified heat;
generated, we know not how, from either the sun’s or the earth’s
heat? For if the sun’s heat can be stored in cold bodies to be used
thousands, or even millions of years afterward, may not earth’s
escaping heat be likewise returned to earth, and every particle of it
be held by earth, as water and air are held by it?

The petroleum, natural gas, and coal that have been little known until
the last fifty years, are all lying within one half mile of earth’s
surface and of sufficient quantity to make several volcanoes, could
oxygen be brought to fan them into a flame. What materials equally as
combustible may be discovered when the earth is penetrated in other
places, and for another half mile below its surface, we do not know;
neither do we know what may be revealed as we descend deeper and deeper
into earth’s every portion until reaching a depth of an hundred or a
thousand miles. But who shall say there are not as wondrous things yet
to come from beneath earth’s crust as have ever been found upon, or
near, its surface? Man has already discovered over sixty elements some
of which, were they in abundance, would give a very enduring flame.
When we see chemists separating water for burning, or consuming steel
files in combustion we may be prepared for other startling discoveries.
What we already know, through cyclones and hurricanes, concerning the
power of air, that is seemingly so subtle and still, should lead us to
believe that we have as yet little understanding relative to the hidden
truths of earth; and what its interior may possess of heat and other
elements is not for us to say with any degree of certainty.

The thought we may now well entertain is this; it is remarkable that
the earth’s surface where we are dwelling is well adapted for our
existence. At present there is life here; that death was in the past,
and destruction will be in the future, we may believe as we choose, but
have no certainty of the fact; for the indestructibleness of every atom
of ether in the universe would seemingly question the power of time to
work destruction to our earth so minute in comparison.

[Illustration: Decoration]


FOOTNOTES:

[14] Winchell, “Walks and Talks in the Geological Field,” p. 98.

[15] Winchell, “Walks and Talks in the Geological Field,” p. 101.

[16] Winchell, “Walks and Talks in the Geological Field,” p. 99.




CHAPTER VII.

THE SUN’S LIGHT AND HEAT.


I conceive that one reason why scientists believe in the nebular
hypothesis is because of their knowing that heat consumes. One cannot
contemplate a burning object without perceiving that it grows smaller
and smaller; therefore why should not the sun with its flaming
hydrogen, rising sometimes to a height of 200,000 miles, consume the
sun? It is claimed but 1/2300 millionth of its force reaches earth,
and yet it is asserted that the sun could melt 287,200,000 cubic miles
of ice per second without quenching its heat.[17] From what we know
appertaining to heat, how can we think it is otherwise than reducing
the sun’s volume?

Yet we must remember there are other things as difficult of
comprehension. We see the mist rising from the ocean and forming into
clouds that drift through the heavens when moved by the winds, and we
might well believe in future years the oceans will be drained of their
contents. But when we learn that all those waters pass into the sky but
to condense and fall to earth, and then through streams again reach the
oceans, we can readily understand that they may be the same to-day as
when created; nor conceive how it will be otherwise to the end of time.

Again, when a boiler of water seems wasting through invisible steam,
expanded 1800 times its original bulk, we might well believe it is
being destroyed only we have learned all that steam in some manner
cools and forms again the first element H^2 O, not one particle being
lost. When any body is burned and we see the flames ascending into the
air, we say it is being destroyed, for so it seems; but chemists tell
us the form alone is changed and the weight after burning identical
with its first weight; showing thereby that not one particle of earth
can either be formed or destroyed, but simply changed from combinations
of molecules to simple molecules, or _vice-versa_.

We see earth everywhere surrounded by an atmospheric sea, not of oxygen
and hydrogen, but of oxygen and nitrogen—four-fifths being nitrogen—and
were the other fifth the same no life could exist in it. Scientists
tell us this atmosphere extends from one to two hundred miles into the
sky, but is densest at the earth’s surface; and as one ascends rapidly
rarifies so that at a height of a few miles no life can exist. From
what is known of winds and cyclones one might expect the atmosphere
would be torn from earth, especially as earth moves at the rate of
1100 miles per minute, and revolves on its axis about the same number
of miles per hour. One would suppose, at least, that which is highest
and thinnest must be left behind in space; yet we cannot learn since
Earth’s creation that any of it has been thus lost.

Furthermore, when we contemplate earth’s delicate poise of forces,—“No
balance turning to 1/1000 of a grain being more delicate,”—we may
well believe the sun is the same to-day as two thousand years ago; for
it could not have wasted any of its substance without having thereby
affected the gravitation of the earth. In some manner, like the waters
that rise from ocean and return again; like the steam, and burning
bodies that are not lost; and like the atmosphere the earth holds,
the sun may be also holding its every atom of heat; though changed,
perhaps, in some of its combinations. We must remember that the
sun’s rays, as they pass into space, can be seen by us only when the
vibrations are between 400 and 800 trillions per seconds, for above or
below that number they are invisible to human sight. Were these rays
condensed, or in some manner changed, making as great a difference
between them as there is difference between the vapors rising from the
ocean to the clouds, and the streams returning to them; they might
before their condensation, or change, give different vibrations from
the ones they would afterward give. While the heat escaping from one
gave light the others returning might be invisible to us. It is evident
that were the sun a dark object it would be invisible to us, as would
the moon without the sun’s rays resting upon it.

May not all light be restored to the sun, and thus keep up its supply
of heat—as well as vapors be returned to ocean—instead of supposing it
is caused by contraction? The only sounds that our ears can detect are
vibrations between 16.5 and 38,000 per second and unquestionably all
above 38,000, even up to and above those of light, would give sound
had we the faculties to detect it. Had we then the right senses all
vibrations below 400 trillions or above 800 trillions per second would
be visible as well as the vibrations that give us light.

Though it is difficult to understand, from all the materials that we
are familiar with, how a fire can burn without its substance being
consumed, we should remember the bush that astonished Moses by burning
without consuming. As little can we conceive that there is a great
globe of fire keeping up its flame and heat for thousands of years
without being diminished. The sun, although seeming to us small as
a ball, is visible at a distance of over 90,000,000 miles. Could we
conceive of any object, even though a million times larger than earth,
being seen by us at that distance only from the fact that it is thus
daily seen, and apparently is the same size as when our eyes first
rested upon it. Even these visible truths are beyond our conception,
and knowing that it is so we should feel that any truth, however
astonishingly great, may be possible.

When we realize that without the sun’s heat and light we ourselves
could not here exist; that it has power to lift the waters that are
unfit for man’s use and restore them again in a purified state; and
power to produce food for him both in the animal and vegetable kingdom,
the truth is not lessened. Were the sun nearer the earth or farther
away all life would here be destroyed; and should any one of all the
suns in space vary the least in its orbit it would be the destruction
of earth. Yet as far as we have learned no sun has ever come within
twenty trillions of miles to interfere with our globe, and from all the
above facts we may well believe there are truths concerning the sun’s
light and heat that we do not yet understand.

That the ocean keeps up its supply of radiation, and as far as we see
never diminishes; that the heat from volcanoes and all other fires
of earth does not escape from earth’s hold, but is returned in new
forms to be used again; leads us to question whether earth’s heat
passes beyond its own atmosphere. The heat of our great solar light
may likewise be equal to that of Adam’s day and continue thus unwasted
until the end of time, or until its great Author sees fit to change it.

While astronomers tell us that the diminution of the sun’s diameter
1/10,000 part would liberate heat enough to supply its current
expenditure for about 2,000 years, they have also shown that it could
be supplied by the friction meteors would cause by rushing into the
sun; provided that the number falling into it in one year equalled the
moon’s volume.[18] We can know little of the number there may be, for
only that they occasionally fall into our atmosphere and are instantly
burned, we should not know of their existence. But it is said that
every 33 years we pass through a shoal of them 100,000 miles broad,
and many thousand times greater in length, and that it has been thus
for centuries. Prof. Newton estimates the average number of meteors
that traverse our atmosphere daily, large enough to be visible to the
eye on a dark night, is 7,500,000. With the telescope-meteors added,
the number is increased to 400 millions. As the sun is more than a
million times the size of the earth should the number falling into it
be increased at the same rate it might reach 150 quadrillions daily,
170,000 falling on every square mile of the sun’s surface.

Again; it is stated by Sir Robert Ball that a body of a pound’s weight
falling from a great distance into the sun, might, in the course of its
friction through the sun’s atmosphere, generate as much heat as would
be produced by the combustion of many times its own weight of coal, if
consumed under the most favorable circumstances. Is there sufficient
evidence yet given to prove that this is not a source of the sun’s
light and heat instead of contraction? The moon, we will say, contains
5,000 millions of cubic miles. If the sun’s radius was 100 millions
of miles, or extended as far as earth, it would have a surface of
120,000 trillions of square miles. Place the earth on its surface and
it would occupy less than 1,000 millionth of that surface, allowing it
to settle into it one-half. The moon’s volume if spread over earth’s
surface would cover it but twenty-five miles deep. If then, the same
quantity of material were spread over the sun while reaching out to
earth it would be covered by it less than 1/300 of an inch in depth;
so thinly, in fact that an apple-skin would be thick in comparison.
Are we prepared to say this amount does not actually accumulate year
by year on the surface of earth, for we are told: “The world is thus
pelted on all sides day and night, year after year, century after
century, by troops and battalions of shooting stars of every size, from
objects not much larger than grains of sand up to mighty masses which
can only be expressed in tons. In the lapse of ages our globe must thus
be gradually growing by the everlasting deposit of meteoric debris.
Looking back through the vista of time past, it becomes impossible to
estimate how much of the solid earth may not owe its origin to this
celestial source.”[19]

But as the sun does not extend out to earth let us see how deeply the
moon’s volume would cover a globe one million miles in diameter having
a surface of three trillions of square miles. Spread the moon’s volume
upon this and we find it would cover the sun about nine feet deep.
This being for one year it would be only at the rate of nine inches
per month, or one-third of an inch per day. Snow would cover earth
to that depth in half an hour, while a mist or dew could cover it in
about twenty-four hours. Thus a constant deposit of meteoric dust even
like dew would give to the sun a volume equal to the moon’s in about
one year. With these facts before us let us notice what is actually
observed about the sun’s corona, so plainly seen when the sun is
totally eclipsed; for can that corona be less than the dew that falls
upon earth if it is thus visible at a distance of more than ninety
millions of miles? We are told, “The corona is a vast shell of unknown
vapors in a highly attenuated state many thousands of miles thick, and
observed to extend at least one-half a degree from what is ordinarily
taken to be the visible edge of the sun.” Is it, then, too much to
believe it is helping to keep up the light and heat of the sun? It is
further asserted that its depth is nearly 100,000 miles and “consists
of reflected light, sent to us from dust particles or meteoroids giving
new densities and rarities that cause the changeful light. Whether they
are there by constant projection, and fall again to the sun, or are
held by electric influence, or by force of orbital revolution, we do
not know.”[20]

The same author quotes from Professor Pierce: “The heat which the earth
receives directly from meteors is the same in amount which it receives
from the sun by radiation, and that the sun receives five-sixths of
its heat from the meteors that fall upon it.” Prof. Langley has stated
that no more than half the sun’s radiant force reaches earth, the
remainder being absorbed by the atmosphere and dust which floats it;
and that much of the absorption must be accomplished by the cosmic
matter existing beyond the atmosphere, while that matter must be more
accumulative in the neighborhood of the sun. Is it not reasonable then,
to suppose that the meteoric, or cosmic dust, falling into the sun is
equivalent to a dew that would cover it one-third of an inch in 24
hours; for why should not the sun attract this little amount of matter
when it has power to draw worlds eighty times larger than earth and
nearly 3,000 million miles distant? Astronomers do not question the
power of this attraction, then if the sun can draw in one meteor may
it not easily draw all that are needed to supply its heat? for the
earth’s orbit around the sun is like a thread. In that orbit it passes
swarms of meteors, and thus of the number that may exist in the vast
circumference about our sun we have little real knowledge.

If it is true that earth receives but a portion of the fearful hydrogen
heat that flames in the sun’s photosphere, one-half being restrained
that it does not reach the earth, may not the rest as easily be
withheld in the far distant space and lie within the sun’s power of
gravitation?

While the sun is the light and heat of earth and all the planets and
their satellites,—as a mother caring for her children,—may not all
these planets, with their atmospheres and powers of gravitation,
help return to her what she so freely bestows upon them? Is it more
difficult to believe this than that we are daily using heat stored for
ages in earth by this same wondrous sun whose light and heat, if more
or less, would work the destruction of man?

When we think of the hundreds of millions of years ago that Saturn and
Jupiter were a portion of the sun’s body we should, according to the
nebular theory, expect that those bodies would long since have cooled.
But if Saturn is to-day a hot, gaseous body of not one-thousandth
part the sun’s mass, nor of an equal density with it, how does it
happen that it is not cold? As astronomers cannot tell the years it
may continue thus hot possibly there may be something about light and
heat that is not yet understood? We are told by Dr. Huggins: “The green
coronal line has no known representative in terrestrial substances, nor
has Schuster been able to recognize any of our elements in the other
lines of the corona.”

It has been said that “the sun cannot shine forever;” why not? Let us
imagine two persons in a room making an agreement that thereafter but
one of them shall be in the room at the same time, for as one enters
it the other will immediately leave. This they might agree to do every
hour, day, year, or millions of years even, could they exist here, and
thus keep it up forever. Likewise if the sun’s rays in some manner
keep returning to the sun, they may exist forever. For if true that “a
particle traveling in a straight line with uniform speed in the same
direction is never able to get beyond a certain limited distance from
the original position, to which it will every now and then return,”
let us apply the theory to a ray of light and see what the result will
be. One would think that a ray of light moving through a cold space
would certainly cool in one minute, but we find that such is not the
case; for this ray of light is the same when it reaches earth as when
it started upon its journey. The eighth minute it moved as fast and
was identically the same as when first projected from the sun. Thus it
ever remains flying through space at the rate of 11 millions of miles
each minute, keeping the same speed as long as it can be detected by
human invention, and on reaching the sun, its starting point, it must
be the same in light, heat, and energy as when it left,—be that time
hundreds, thousands, or millions of years,—and is ready to repeat its
voyage forever; why not? If for every ray of light that goes out from
the sun the same number enters, this process must forever keep the sun
supplied. Is it not true of the waters of the Niagara Falls that no
more flows down its stream than has already ascended to the clouds in
vapor, then may it not be equally true of the sun’s light and heat?

The gravitation that applies to bodies may also apply to light, and
give to it as much greater an orbit than that of comets as comets
have greater than that of the planets. Though light may have a vastly
greater ellipse it may in the end return to the sun which projects
it, to be again projected. When we think of the molecules in space
that everywhere seem to possess the same properties, and the vastness
of that space, we are ready to conceive that light may have the same
unending properties.

Again, in reference to the stars burning out, or growing old—as is
believed by some to be the case with our own sun and other suns in
space, because of their varied colors and appearances—the following
thoughts may be suggested. At times our sun seems to have dark spots
upon its surface, while in other places great prominences are observed.
This being the case who believes that everywhere the sun emits the same
light and heat; and if not what must be the effect at our distance from
the sun whether a dark spot, or a great projection of flaming hydrogen
is directly before us? Let us imagine a sphere, with the sun for its
centre, that has a radius reaching out a little way beyond earth, and
a surface that might contain 1200 millions of bodies like our earth.
Supposing earth to occupy, in turn, each of these 1200 millions of
places we cannot believe the sun to have the same appearance from each
of them. We are told by Prof. Ball that masses of vapor are frequently
expelled from the interior of the sun with a speed of from 300 to
nearly 1,000 miles a second, although the fact would hardly be credible
only that the spectroscope enables the observer to actually witness the
ascent of these solar prominences at a distance of more than ninety
millions of miles. Now from these facts would one suppose that the sun
could appear the same when viewed from each of those 1,200 millions of
places?

When observed from a position directly facing the dark spots the sun
would seem very different from the same body viewed from a place
facing the solar heights whose streams of fire were moving toward one
at the rate of from 500 to 1,000 miles per second. Or let us form a
sphere with the next nearest sun, Alpha Centauri, as its centre, and
a radius of ten trillions of miles. In such a sphere we might place
1,210 quadrillions of earths. Who believes, that were that number of
bodies of earth’s size placed about the star Alpha Centauri, to each
of them it would appear alike, especially if it were like our sun with
dark spots and prominences upon its surface? It would seem that the
light received from it might be so variable that different ages would
be attributed to the sun, according to the position from which it was
observed. Our own sun when seen from different points of the earth’s
surface—as, for instance, from the arctic region or torrid zone—does
not look to us exactly the same. A very little change in the atmosphere
affects the appearance of the sun as we daily view it, and the pictures
of the corona taken at different places—or even at the same place with
different instruments—are found on careful examination to present quite
different appearances.

Once again, assume the sun’s diameter to be one million of miles
with a surface of three trillions of square miles which if two miles
in depth would have twice that number of cubic miles, _i. e._, six
trillions of cubic miles. Imagine then a sphere with a radius of three
billions of miles from the sun’s centre, that is one reaching beyond
the planet Neptune, and we have a sphere containing 108 octillions of
cubic miles in volume, which divided by six trillions gives us 18,000
trillions of centuries, providing the mass has contracted six trillions
of cubic miles each century. It might be said that when the sun had
6,000 millions of miles for its diameter it would have contracted more
than six trillions of miles a century; but we must remember that it
is a law of spherical, gaseous volumes that they revolve swifter and
swifter, and grow hotter and hotter as they contract. Hence, the sun
to-day being smaller is revolving more rapidly and contracting faster
than ever before; though it is not detected by us. As its diameter
and volume must have been larger when it contracted more slowly its
decrease could not have been more rapid, if as rapid as now, and at
the rate of no more than six trillions of miles each century. If this
be true we cannot have over estimated the number of centuries that the
sun has been contracting. Then from these suppositions if the sun’s
energy has not waned in all these 18,000 trillions of centuries, it
seems probable that the Power that has caused it to glow thus long
may continue to give to it an energy that shall flow on with unabated
strength throughout the coming ages.

As the idea of the burning-out of the sun is based upon the theory
that the sun formerly was larger than now and has been reduced to its
present size by contraction—although we can in no manner detect that
change—the theory may still be questionable. It seems more agreeable
to believe there will be no limit to the sun’s bright radiance. Its
unbounded flow of light throughout all the years of past time should
give us assurance (until there is certain evidence to the contrary)
that it is as capable of existence, and as able to resist the inroads
of time, as the water in our oceans, the earth upon which we live,
the air surrounding earth, and the ether above; all of which we feel
exist and are preserved by the Powerful Hand and All-Seeing Eye of an
Almighty Creator. It really matters little to us whether or not the
sun is burning-out, for we could live, did that Creator so order, as
well without as with it. There are creatures better adapted to the
arctic seas than to the waters of the torrid zone; there are others
that provide not for themselves but lie dormant through the cold
winter months; there are birds and animals that see by night as well
as by day; and our sight could as easily be adjusted for vision in
one vibration per second as to make it dependent on 400 trillions of
vibrations.

Still our natures are such that what would be harmful in our present
state we prefer should not happen even in the years to come; and so
continue to believe in the sun’s endurance, although there may be some
things that give credence to the idea that destruction will come to
it in the future. We can understand that one ignorant of vaporization
might sit at the foot of Niagara Falls and say, “Surely there cannot
be water above to supply much longer this enormous, swiftly-flowing
volume.” In a like manner we are unable with the sun 90,000,000 miles
distant, to detect any diminution of its light or heat; and judging
only of the condition it was in 2,000 years ago by its power of
gravitation, and its hold upon the planet-worlds—as evidenced by the
transits of Venus and the eclipses—we are led to believe that, wise as
men are, they do not yet fully comprehend all the laws relating to this
wonderful Solar Energy.


FOOTNOTES:

[17] Warren, “Recreations in Astronomy,” p. 94.

[18] Ball, “In Starry Realms,” p. 21.

[19] Ball, “In Starry Realms,” p. 230.

[20] Warren, “Recreations in Astronomy,” p. 82.




CHAPTER VIII.

NEBULAE.


We are told by Prof. Ball that such is the translucency of nebulae
one might think to be able to see through them the stars lying in
the back-ground, were they in the right position for observation. If
nebulae are thus translucent it does not seem possible that they can
be composed of the same materials as the planets of the solar system,
whose densities are generally so great. For were the whole of earth’s
substance spread out to one-hundredth of an inch in thickness we can
not believe it would be sufficiently clear to allow light to penetrate
it to any great extent, as earth has a density that leads one to think
it is centrally composed almost—if not wholly—of iron, lead, gold,
or like weighty elements that seemingly would never be transparent
however highly heated and expanded. But if the nebulae are similar to
the planets in their substances they must then consist of enormous
masses of luminous, heated matter in a highly diffused state, in order
to be perceptible to us at so great a distance; and how can they be
translucent if the coloring matter is retained to darken the gases
that are in combustion? Material similar to that of earth, if highly
diffused and placed in an element 300° below zero, would cool almost
immediately; and whether luminous or not would be likely to obstruct
our view of all stars lying behind it.

We are told again by the same writer that doubtless there are hundreds,
thousands, or even millions of dark bodies to each luminous one in
space. But it has not been shown that these dark bodies ever needed to
have been luminous in their formation, neither is it improbable that
non-luminous matter,—even if once highly diffused, and spread out in
the heavens as our sun is supposed once to have been diffused,—should
have formed into these dark, spherical bodies in some manner similar to
the condensation of vapor into clouds. If this be true the presumption
is that the dark bodies are hiding many bright stars from our sight.
It is not possible, then, to conceive that the many stars thus
hidden—or partially hidden—may, like our sun when totally eclipsed,
give a corona-like glow? Our own sun’s corona flames out in every
direction for more than 200 thousand miles, and should there be many
suns eclipsed by the dark bodies in space might they not likewise, in
some instances, present a nebulous appearance with a startling coronal
effect? Theta Orionis, the wondrous multiple star, seemingly lying
in Orion’s great nebula, is regarded as belonging to it because of
its being in the same degree of the heavens; but although in the same
degree it may be in quite a different plane, as light travels at the
rate of over eleven millions of miles per minute. If this nebula is
unresolvable stars then the light from it may be millions of years in
reaching us, while from Theta Orionis, if it lies in the foreground,
the light might reach us possibly in one hundred years,—according
to the distance it is removed from earth. The probabilities are
that the multiple star lies nearest the earth, for if the nebula is
composed of material similar to earth, we could not think at such a
distance to be able to see through a single foot, or even inch, of its
substance. There are about 5,000 stars visible to the naked eye in
both the northern and southern hemispheres, but only about one-third
of that number are visible at any one time. Few people are able to
see two thousand of them on the clearest night, while many do not see
one thousand, because of their inability to detect those of the sixth
magnitude. The Milky-Way, therefore, is quite like a great nebula to
man’s unaided vision. At each increase of photographic and telescopic
power new stars are observed, until it is now said that 100 millions
may be visible by their aid. If all these knowable stars are no more
to space than a drop of water is to the Atlantic ocean, as the above
writer has said, it is not in the least surprising that we see a
great number of nebulae. This we must ever expect, even though our
telescopes be increased a millionfold in power. In fact it would be
most surprising if unresolvable nebulae did not forever appear in space
as often as instruments of increasing penetration should be brought
into positions to examine them. If space, like our oceans and our
atmosphere, should be subordinate to something greater that we have
never seen, and have no prospect of seeing in our present state, we can
form concerning it no adequate conception.

To obtain an impression of the greatness of the nebulae in the heavens
let us discord every instrument as though there were none, and upon
some clear, moonless night stand gazing into the starry heavens. It
might seem as though we were looking at millions of stars, but we
should find by counting that the distinct points of light were only
about one thousand. Imagine our sight to increase so that we beheld two
thousand stars, then four thousand, eight thousand, and so on until
finally, with our sight increased a thousand-fold, we were able to see
one hundred millions of stars, the number that may be seen with the
most powerful instruments. What we beheld as nebulae when we saw but
one thousand distinct stars would thus be resolved into shining suns
with sufficient increase of power. Then is it not a fair supposition
that—if our sight were adapted to the beholding—we should be able to
detect not only one hundred millions of stars, but myriads of them?

Again, when we think of the irregular shapes that many of the nebulae
have, can we believe that they are rotating like the sun and planets?
for we look to spherical bodies for revolution. We know there are
many peculiar-shaped nebulae emitting light and heat, yet that light
and heat may in nowise be produced by their swift revolutions, and we
cannot think of them as undergoing a change such as we would expect
from the nebular theory of world-formation.

In reference to the nebula in the Sword’s-handle of Orion, which
contains matter sufficient to form two thousand and two hundred
trillions of suns like our own; if this matter is of any density—or if
not, even—it would seemingly cool almost instantly in an element 300°
below zero. In truth how could it have become heated unless composed
of some combustible element, like hydrogen, that would spring of
itself into a mass of flame with an energy,—if there is conservation
of energy,—that would exist for ever, and might repeat its work over
and over again as do the oceans of our earth? There is no evidence,
as far as we have ascertained, that this nebula rotates; nor can we
believe that its luminosity is caused by swift revolution when our own
sun, less than one million of miles in diameter, rotates but once in
twenty-five days and is now moving swifter, according to the laws of
mechanics appertaining to spherical, vaporous bodies, than ever before.

Even scientists and philosophers cannot tell us of the formation of a
grass-seed, from which springs life identical with its kind; neither
can they detect with the best microscope any difference between the
varied forms of matter in the first stages of inception, nor feel sure
whether there will be developed therefrom a tree, a dog, an elephant,
or a man. For two hundred years _spontaneous combustion_ has been
discussed, some finding from an infusion of hay that life appeared;
but when the idea was supposed to have been proved it was discovered
that life was in _air_, and with the life-germs taken from it no
spontaneous generation would arise. Later it was found that bacteriae
would exist in great heat, and from that fact _biogenesis_ was thought
proved; for life only could come from life. We remember also that for
years the famous Bodes Law was considered fully established, until
upon the discovery of planet Neptune it was found to be so far out of
position that the law was no longer applicable to the distribution of
the planets of the solar system. Remembering all these changes after
science considered the theories well established, we believe there are
things to-day about nebulae, even, that conflict with the hypothesis
under consideration; as, for instance the irregular shape they often
assume, and the fact that many have already been resolved into stars
with the aid of sufficiently powerful instruments.

[Illustration: Decoration]




CHAPTER IX.

LIMITATIONS.


To understand how our powers are limited let us take the following
illustrations. We see a horse of great fleetness, power, and
intelligence, with a barn before him all his life; and yet unable to
build one though he well knows it will protect him from the winds,
cold, and rain. We likewise see man with grass-seed, grains of sand and
oceans of water before him, and floods of air above; unable to make a
particle of any of these, no matter how much he needs soil to stand on,
water to quench his thirst, or air to breathe. His powers are limited;
he cannot live in ocean, sail the air, or even penetrate the earth to
any great depth. There are barriers against him, and although he has
invented wondrous ships, they do not yet take him to the North or South
Poles. Not that he does not know where the Poles are upon the earth’s
surface, but he seems thus far utterly unable to pass the surrounding
barriers. May not these very barriers be protecting some creatures that
otherwise might be exposed to injury or extermination? for we see how
living things are protected, oftentimes, by their diminutive size so
that animals of greater power and size cannot enter their homes to harm
them; or the weaker ones have a fleetness given to them whereby they
escape in time of danger.

We find man endowed with such reason and wisdom that occasionally
he discovers keys unlocking the mysteries of creation; these have
already opened to our view, the “ancient sunlight,” and developed
steam, electricity, and other of the natural forces for man’s benefit.
Suppose that George Washington had awakened after but a night’s sleep
and been told that King George of England desired to speak with him.
Would not the astonished General have asked: “What has become of the
Atlantic ocean that I am expected to talk with King George without
going to London to meet him!” That which would have inextricably
puzzled the Great Commander-in-Chief is to-day scarcely thought of
as mysterious, and we may believe that many like mysteries will yet
yield to man’s remarkable intelligence. On this great earth with its
270,000 millions of cubic miles, with its oceans of water and the
ocean of air surrounding it, and with the enormous amount of light
and heat falling upon it from the sun, we see life enough to lead us
to know assuredly there must be oceans of life of which we at present
know nothing. Take, for instance, any field or garden and extend it
however far you please—even to cover the whole earth if you will—and
with but a single grass-seed you can cover the whole earth with that
particular kind of grass;—assuming that it has the necessary light,
heat, and moisture to make it grow and increase. We know there is light
and heat in abundance, for enough falls upon the torrid zone alone to
give to the whole earth a moderate temperature, if equally diffused. We
know, further, that this single grass-seed is not the life but simply
the key that will unlock any quantities of life. What is true of the
seed is true also of every variety of vegetable and animal life. The
present ocean and earth are invisible to one born blind, and as little
do we see the oceans of life about us. Knowing as we must that such
life exists let us look for the fire-mist of _life_, a few particles
of which are familiar to us. We reason from the life we now see that
it can be extended; then let us extend it, as the fire-mist of our
planetary system, to Neptune’s bounds, reasoning in the same manner
from the least to the greatest. If we do not choose to use one cycle of
time we may take millions of them, as in the cooling fire-mist theory;
but we must not forget that the life we know is only on the crust of
earth and goes back but a few thousand years. If earth is the same
material as the sun and it takes, as we have stated, two million earths
to make one sun of a million miles diameter, with no limit to the
number of such suns; we can readily understand, from what we know of
life here, that there may exist other great and wonderful beings beyond
our highest apprehension.

We are limited in sight, for we cannot see but a few miles through
the clearest atmosphere. The mountains at no great distance take on
a cloud-like appearance, and resemble more nearly the surrounding
sky than the great heights of rock and earth they are found to be
when viewed near at hand. When we endeavor to look beneath us and
find that we cannot gaze for a single foot into the earth; and that
gold and diamonds might lie six inches underneath our feet and we not
be able to observe them, we understand how greatly our vision is
limited. Electric currents pass over the many wires strung throughout
our cities, and our sight is so limited that though we look long and
intensely we are not able to detect that electricity. The life in all
animals and vegetation is also imperceptible to us, for we only know
of its existence from the movements and appearances of bodies that
possess life, as compared with those that do not possess it. There
are many qualities of life—as love, goodness, virtue, hate, jealousy,
and revenge—that are as dissimilar as fire and water, or darkness and
light; and could we behold them they would assume shapes differing as
greatly as globes, squares, and triangles differ.

Still, what we most long to see are the spirits of our loved ones as
they depart from this mortal life and ascend into the presence of
their Creator; but look as long as we will, with all the faculties we
possess, we must at last fall back upon the assurance that our faith in
the Word of God lays hold of for our comfort and consolation. Though we
there learn that “Enoch walked with God and was not, for God took him;”
that Elijah went up by a whirlwind into Heaven; that Moses and Elias
were revealed on the Mount of Transfiguration; and that Jesus after his
resurrection was seen by His followers for forty days; yet the human
beings _we_ know and love must leave their bodies behind them as they
wing their flight to worlds beyond, and our sight is so limited that
we cannot perceive the souls even of our own life and being after they
have left their home in the flesh. In the same manner we should know
nothing of the depths of space only for the light that comes from stars
removed an inconceivable distance; for of this fact we are assured by
astronomers, and we should never dream that we looked a thousand miles
into the heavens only for those outside worlds that give to us, through
their magnitudes and distances, a faint conception of the Infinite
Greatness.

[Illustration: Decoration]




CHAPTER X.

THE FIRE-MIST OF LIFE.


The theory of the formation of worlds from Nebulae is not only endorsed
by Sir Robert Ball but he states his belief that the same theory is
carried out upon earth in the formation of life according to the plan
of Darwin. To quote his words, Darwin “has shown that the evolution
of the lifeless earth from nebulae is but the prelude of an organic
evolution of still greater interest and complexity.” And further: “Can
it be possible that the wondrous and complex phenomena known as life
are purely material? Can a particle of matter which consists only of
a definite number of atoms of definite chemical composition manifest
any of those characters which characterize life? Take as an extreme
instance the brain of an ant which is not larger than a quarter of
a good-sized pin’s head. It would require a volume to describe what
we know of the power of ants.” The following are among the wonderful
things mentioned of their faculties. They communicate information to
each other, build great edifices, make roads, tunnel under rivers and
make temporary bridges over them by clinging together, store seeds,
keep aphides as milch cows, go out to battle, and capture slaves;
showing thereby a wonderful amount of power when we remember that the
ant’s brain is said to be but a little globule one-thousandth of an
inch in diameter. From the above we learn that the ant with a brain
no larger than a quarter of a pin’s head is one of the most wondrous
things in the world of life.

Let us conceive of such an ant standing before St. Peter’s Cathedral
at Rome and asking of his species: “Who made that great building?” We
may anticipate the reply, “We do not know.” Hear him ask again the
question of all birds, insects, reptiles, and animals and receive
the same answer, “We do not know.” Let him ask it at last of man who
replies, “I well know who made it.” Encouraged he asks again, “Did you
make it,” but the answer comes quickly, “No.” Still persistent he asks,
“Could you make it?” and the answer is “No, it is not every man that
could make such a building and surmount it with so wondrous a dome.”
Once again he asks: “But if you did not, and could not make it, how
do you know the builder of it?” He receives the answer: “I know as
well as though I myself had done it. I have brain-power enough to know
who planned it but it required one with a greater brain, even Michael
Angelo, to conceive and build it.”

We have here seen the power of a brain smaller than a pin’s head; the
additional power of one a few inches in diameter that could _know_ the
constructor of the great building, and yet be unable to make it; and
the further increase of brain-power in the maker of that magnificent
Cathedral. Yet the brain of Michael Angelo, so many times larger than
the ants, is not enough for our purpose. We would find one large
enough to know how the ant’s brain was formed and who formed it.
Finding the brain knowing that, we would continue our queries until we
found one a foot in size, a mile, earth’s size if you will, and finding
that might learn what we would know of the creation of the nebulae of
worlds and life; for to that brain we owe all that we possess here and
may ever expect to possess.

We have been told of the wonderful instinct displayed by an ant, and
yet we may not suppose, were an ant possessed of the power of speech,
it could ever make observations like the above. We can conceive of a
creature that possessed many times the ant’s brain-power making the
inquiry, “How came this great structure?” and, asking it of a comrade
that possessed the same powers as he, receiving the reply, “I do not
know.” We may think of him as pushing the inquiry and receiving the
answer from some that it had no author, but must have grown like the
trees from nothingness; from others the conjecture that it was made
by some great animal of sea or land; or again that it was made by a
creature called man. We can believe that whatever their opinion might
be it would matter little to Michael Angelo the author. In the vastness
of the universe and the wonderful mysteries enveloping it; with the
telescopes, spectroscopes, and other powerful instruments; with all
the observations of centuries, and theories concerning earth’s first
cause; man is yet like the ant before St. Peter’s. There is truth in
the statement, “The Theory of Evolution may be true or it may be false
it is still but an attempt to guess at a process; it does not touch the
author of that process and never will.”[21]

To resolve, then, the mystery of the universe we believe that a great
stride would be made could we find a being with wisdom like to man’s,
but possessing power to create a fire-mist such as is conceived in the
Nebular Hypothesis. Finding such a being we should never for a moment
think, from what we know of dead matter, of its resolving itself into
the order and system displayed in the universe, but unhesitatingly
ascribe its formation to a being possessing such wisdom and power.
Starting then with the theory that a Being with the intellect of man,
but omnipotent power, could produce all that is now unintelligible to
us; let us contemplate the appearance of His works and what we do not
understand believe that He will unfold as our powers increase and as
science develops.

The Revealed Word, the Great Astronomy, tells us that this Being is
God and ascribes to Him the creation of the heavens, worlds, man, and
life in all its forms. We can appreciate the astounding facts described
in other works, and can we not _feel_ the truths revealed in this? We
meet people who believe this Revelation, perhaps doubtfully at first,
but after study of the Word, or from hearing it explained, the truth
becomes manifest to them; and what is remarkable and worthy of our
contemplation is the fact that not one of the many millions who heed
that Word, and live lives faithful to it, but will tell us ere they
die that they do not regret the choice they have made and only wish
that they had accepted its truths sooner.

The presumption is that if every human being would accept the fact
that he owes his being to an Almighty God not one would ever regret it
more than they who have already accepted the belief. Sooner or later
all men are cast into the great fire-mist of Eternity, but ere they
go hence accept or refuse a belief that _may_ affect them throughout
eternity. Many men are urging people to accept of the Salvation offered
in the Bible, and the spirit within man feels the wisdom of such an
acceptance. Men of thought see from their own anatomy that there
must be a Being greater than themselves to have formed so wondrous a
body, or even to have formed one of the smallest, as a grass-seed or
animalcule. Why then should men need urging to make God their choice?
Suppose we were suddenly cast upon a billowy sea but near us lay a
life-boat, which if we laid hold upon the chances were, in nine cases
out of ten, we should be saved. Would we hesitate a moment before
making our choice? Desire for life would compel us to grasp the boat.
Suppose, further, there was but _one_ chance out of ten that if we
entered the boat we should be saved, would we not instinctively make
sure of that one chance, knowing if it were worthless we could be no
worse off than floundering without it in the bottomless sea?

But can we look at creation, even without this Revealed Word, and
say there is no evidence of a _chance_ for a future life? It is few
years that man lives upon earth, and those years can be but a breath
to eternity; for we cannot suppose all the atoms in space will equal
the years of eternity. As dying men, then, shall we live again? It is
no more wonderful to believe in a new life than to believe that the
combinations of our bodies are never destroyed, but are resolved again
to atoms and molecules. It is no more mysterious than that the waters
rise from oceans to the clouds only to return again, and repeat the
process from year to year; no stranger than that earth wheels through
space at the rate of nearly two millions of miles daily, without losing
a drop of the waters that cover three-fourths of its surface; no more
wonderful than the air that is composed of four-fifths nitrogen, and
were the other fifth the same no life could exist; no more wonderful
than that the sun at its great distance, holds earth as firmly by the
invisible ether, as if it were an iron cord; and no more wonderful than
that in earth’s yearly voyage about the sun, and in the daily turning
upon its axis, we do not detect the slightest jar or movement. Neither
is it as mysterious as that time has no destructiveness upon earth,
water, light, air, and ether, which are seemingly eternal elements; and
though our spirits are imperceptible while living here, so are also
some of the known energies of nature. Magnetism, that day and night,
on sea or land, directs and holds the magnetic needle to the north,
reveals its certain existence to us, although invisible to any faculty
we possess; electricity and the gases, of which earth, air, and ocean
are mainly composed, are invisible as well as indestructible; ether,
filling the immensity of space, is impervious to time; and each atom
of it has energy to transmit light from every sun in space, whether
near or distant, without varying a second per day, thereby enabling
astronomers to predict future occurrences with perfect assurance for
hundreds of years.

It is no more wonderful to believe in a future life than to believe
there are millions of animalcule in a drop of water; nor as mysterious
as that our bodies are constantly changing their forms. The man of
years has possessed many bodies that he has unconsciously cast aside,
and in old age has no more the body of infancy, childhood, youth,
and manhood than he has the body of another person. Yet we see man
clinging to his toothless, hairless, blinded, deaf, and decrepit form
while leaning upon a staff for support, as though he could not live if
separated therefrom; and why not as well lay aside wholly the earthly
body for the heavenly? Nearly the whole universe is eternal, and our
invisible spirits should be no more incomprehensible to us than are the
universal elements and energies of nature.

It is our first living, our living now, that is wonderful and
mysterious; for we find of every invention of man, the first invented
one of its kind is the one most wondrous. Then with all this great
universe around us shall we not live again? Are we so blinded that we
see no chance of living without these bodies, when we possess faculties
fitted for the contemplation of an Eternal Universe, although not the
power of fully understanding its significance?

When we think of ourselves, our earth, and the sun more than a million
times larger, and the size that it assumes at a distance of ninety
millions of miles, while we receive but 1/2300 millionth of its light
and heat; when we think of the millions of suns equally great, but all,
taken together, no more than a leaf in a great forest compared with
the universe that embraces myriads of suns and systems; when we think
again of the great nebulae, and all that may be within their range,
and beyond them; we can but believe there is a God over all who may do
infinitely more for us, His creatures, than all others can do, and in
the eternity to come, prove our best and dearest friend.

It may be asked in this widespread universe, will He recognize earth
or us? Yet we must remember there is evidence of the same formative
Hand alike in each atom of air, the countless worlds, and man himself.
Then who but a mightier Power can do what man can not? We may securely
feel that if God made man in his own image,—which we are led to believe
without the Bible’s revelation—He can give to him protection, thought,
and love. Then the chance, or probability—if you do not regard the
possibility or certainty—of living in God’s presence for as many
millions of years as there are atoms in earth, which cannot comprehend
eternity, are evidenced by what we here behold. Should we not live,
then, in expectancy and hope, our faith grounded on what we behold in
our earth, sun, and the universe?

The works of man are multiple, but among them all, we do not find one
of _chance_ in its formation. We always recognize man’s hand and
expect no form without a maker; so of the universe. The mighty worlds
as well as the invisible atoms bear evidence of a Creator, and have
the same assurance stamped upon them as have the inventions of man. We
should thereby recognize the truth that God exists and regulates the
vast and countless worlds, the tiniest molecule, and man himself.

Surely, then, in accepting the faith of the Bible there can be no
loss, while by accepting of it we may stand approved by One who
created worlds, space, and all life, the existence of which is within
our vision, but the contemplation of which is infinitely beyond our
conception.

[Illustration: Decoration]


FOOTNOTES:

[21] Chambers, “Hand Book of Astronomy,” preface page 9.




  Transcriber’s Notes

  pg 1 Changed: BIRDGEPORT, CONN.:
            to: BRIDGEPORT, CONN.:

  pg 31 Changed: we can disern with a microscope
             to: we can discern with a microscope

  pg 33 Changed: oceans equaling the drops of water
             to: oceans equalling the drops of water

  pg 51 Changed: wasting through invisable steam
             to: wasting through invisible steam

  pg 63 Changed: flow of light througout
             to: flow of light throughout

  pg 65 Changed: spread out to one-hundreth of an inch
             to: spread out to one-hundredth of an inch

  pg 76 Changed: things mentioned of their faculities
             to: things mentioned of their faculties

  pg 81 Changed: electrcity and the gases
             to: electricity and the gases




        
            *** END OF THE PROJECT GUTENBERG EBOOK THE EVOLUTION OF WORLDS FROM NEBULAE ***
        

    

Updated editions will replace the previous one—the old editions will
be renamed.

Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.


START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works

1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:

    This eBook is for the use of anyone anywhere in the United States and most
    other parts of the world at no cost and with almost no restrictions
    whatsoever. You may copy it, give it away or re-use it under the terms
    of the Project Gutenberg License included with this eBook or online
    at www.gutenberg.org. If you
    are not located in the United States, you will have to check the laws
    of the country where you are located before using this eBook.
  
1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:

    • You pay a royalty fee of 20% of the gross profits you derive from
        the use of Project Gutenberg™ works calculated using the method
        you already use to calculate your applicable taxes. The fee is owed
        to the owner of the Project Gutenberg™ trademark, but he has
        agreed to donate royalties under this paragraph to the Project
        Gutenberg Literary Archive Foundation. Royalty payments must be paid
        within 60 days following each date on which you prepare (or are
        legally required to prepare) your periodic tax returns. Royalty
        payments should be clearly marked as such and sent to the Project
        Gutenberg Literary Archive Foundation at the address specified in
        Section 4, “Information about donations to the Project Gutenberg
        Literary Archive Foundation.”
    
    • You provide a full refund of any money paid by a user who notifies
        you in writing (or by e-mail) within 30 days of receipt that s/he
        does not agree to the terms of the full Project Gutenberg™
        License. You must require such a user to return or destroy all
        copies of the works possessed in a physical medium and discontinue
        all use of and all access to other copies of Project Gutenberg™
        works.
    
    • You provide, in accordance with paragraph 1.F.3, a full refund of
        any money paid for a work or a replacement copy, if a defect in the
        electronic work is discovered and reported to you within 90 days of
        receipt of the work.
    
    • You comply with all other terms of this agreement for free
        distribution of Project Gutenberg™ works.
    

1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.

Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.