The Moon-Voyage

By Jules Verne

The Project Gutenberg EBook of The Moon-Voyage, by Jules Verne

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org


Title: The Moon-Voyage

Author: Jules Verne

Release Date: July 12, 2004 [EBook #12901]

Language: English


*** START OF THIS PROJECT GUTENBERG EBOOK THE MOON-VOYAGE ***




Produced by Norm Wolcott, Gregory Margo and PG Distributed Proofreaders




THE MOON-VOYAGE.

CONTAINING
"FROM THE EARTH TO THE MOON,"
AND
"ROUND THE MOON."

BY

JULES VERNE,

AUTHOR OF "TWENTY THOUSAND LEAGUES UNDER THE SEA,"
"AMONG THE CANNIBALS," ETC.

ILLUSTRATED BY HENRY AUSTIN.

       *       *       *       *       *

CONTENTS.

"FROM THE EARTH TO THE MOON."

I. THE GUN CLUB

II. PRESIDENT BARBICANE'S COMMUNICATION

III. EFFECT OF PRESIDENT BARBICANE'S COMMUNICATION

IV. ANSWER FROM THE CAMBRIDGE OBSERVATORY

V. THE ROMANCE OF THE MOON

VI. WHAT IT IS IMPOSSIBLE TO IGNORE AND WHAT IS NO LONGER ALLOWED TO
BE BELIEVED IN THE UNITED STATES

VII. THE HYMN OF THE CANNON-BALL

VIII. HISTORY OF THE CANNON

IX. THE QUESTION OF POWDERS

X. ONE ENEMY AGAINST TWENTY-FIVE MILLIONS OF FRIENDS

XI. FLORIDA AND TEXAS

XII. "URBI ET ORBI"

XIII. STONY HILL

XIV. PICKAXE AND TROWEL

XV. THE CEREMONY OF THE CASTING

XVI. THE COLUMBIAD

XVII. A TELEGRAM

XVIII. THE PASSENGER OF THE ATLANTA

XIX. A MEETING

XX. THRUST AND PARRY

XXI. HOW A FRENCHMAN SETTLES AN AFFAIR

XXII. THE NEW CITIZEN OF THE UNITED STATES

XXIII. THE PROJECTILE COMPARTMENT

XXIV. THE TELESCOPE OF THE ROCKY MOUNTAINS

XXV. FINAL DETAILS

XXVI. FIRE

XXVII. CLOUDY WEATHER

XXVIII. A NEW STAR

       *       *       *       *       *

"ROUND THE MOON."

PRELIMINARY CHAPTER. CONTAINING A SHORT ACCOUNT OF THE FIRST PART OF
THIS WORK TO SERVE AS PREFACE TO THE SECOND

I. FROM 10.20 P.M. TO 10.47 P.M.

II. THE FIRST HALF-HOUR

III. TAKING POSSESSION

IV. A LITTLE ALGEBRA

V. THE TEMPERATURE OF SPACE

VI. QUESTIONS AND ANSWERS

VII. A MOMENT OF INTOXICATION

VIII. AT SEVENTY-EIGHT THOUSAND ONE HUNDRED AND FOURTEEN LEAGUES

IX. THE CONSEQUENCES OF DEVIATION

X. THE OBSERVERS OF THE MOON

XI. IMAGINATION AND REALITY

XII. OROGRAPHICAL DETAILS

XIII. LUNAR LANDSCAPES

XIV. A NIGHT OF THREE HUNDRED AND FIFTY-FOUR HOURS AND A HALF

XV. HYPERBOLA OR PARABOLA

XVI. THE SOUTHERN HEMISPHERE

XVII. TYCHO

XVIII. GRAVE QUESTIONS

XIX. A STRUGGLE WITH THE IMPOSSIBLE

XX. THE SOUNDINGS OF THE SUSQUEHANNA

XXI. J.T. MASTON CALLED IN

XXII. PICKED UP

XXIII. THE END

       *       *       *       *       *




FROM THE EARTH TO THE MOON.

       *       *       *       *       *




CHAPTER I.

THE GUN CLUB.


During the Federal war in the United States a new and very influential
club was established in the city of Baltimore, Maryland. It is well
known with what energy the military instinct was developed amongst that
nation of shipowners, shopkeepers, and mechanics. Mere tradesmen jumped
their counters to become extempore captains, colonels, and generals
without having passed the Military School at West Point; they soon
rivalled their colleagues of the old continent, and, like them, gained
victories by dint of lavishing bullets, millions, and men.

But where Americans singularly surpassed Europeans was in the science of
ballistics, or of throwing massive weapons by the use of an engine; not
that their arms attained a higher degree of perfection, but they were of
unusual dimensions, and consequently of hitherto unknown ranges. The
English, French, and Prussians have nothing to learn about flank,
running, enfilading, or point-blank firing; but their cannon, howitzers,
and mortars are mere pocket-pistols compared with the formidable engines
of American artillery.

This fact ought to astonish no one. The Yankees, the first mechanicians
in the world, are born engineers, just as Italians are musicians and
Germans metaphysicians. Thence nothing more natural than to see them
bring their audacious ingenuity to bear on the science of ballistics.
Hence those gigantic cannon, much less useful than sewing-machines, but
quite as astonishing, and much more admired. The marvels of this style
by Parrott, Dahlgren, and Rodman are well known. There was nothing left
the Armstrongs, Pallisers, and Treuille de Beaulieux but to bow before
their transatlantic rivals.

Therefore during the terrible struggle between Northerners and
Southerners, artillerymen were in great request; the Union newspapers
published their inventions with enthusiasm, and there was no little
tradesman nor _naïf_ "booby" who did not bother his head day and night
with calculations about impossible trajectory engines.

Now when an American has an idea he seeks another American to share it.
If they are three, they elect a president and two secretaries. Given
four, they elect a clerk, and a company is established. Five convoke a
general meeting, and the club is formed. It thus happened at Baltimore.
The first man who invented a new cannon took into partnership the first
man who cast it and the first man that bored it. Such was the nucleus of
the Gun Club. One month after its formation it numbered eighteen hundred
and thirty-three effective members, and thirty thousand five hundred and
seventy-five corresponding members.

One condition was imposed as a _sine quâ non_ upon every one who wished
to become a member--that of having invented, or at least perfected, a
cannon; or, in default of a cannon, a firearm of some sort. But, to tell
the truth, mere inventors of fifteen-barrelled rifles, revolvers, or
sword-pistols did not enjoy much consideration. Artillerymen were always
preferred to them in every circumstance.

"The estimation in which they are held," said one day a learned orator
of the Gun Club, "is in proportion to the size of their cannon, and in
direct ratio to the square of distance attained by their projectiles!"

A little more and it would have been Newton's law of gravitation applied
to moral order.

Once the Gun Club founded, it can be easily imagined its effect upon the
inventive genius of the Americans. War-engines took colossal
proportions, and projectiles launched beyond permitted distances cut
inoffensive pedestrians to pieces. All these inventions left the timid
instruments of European artillery far behind them. This may be estimated
by the following figures:--

Formerly, "in the good old times," a thirty-six pounder, at a distance
of three hundred feet, would cut up thirty-six horses, attacked in
flank, and sixty-eight men. The art was then in its infancy.
Projectiles have since made their way. The Rodman gun that sent a
projectile weighing half a ton a distance of seven miles could easily
have cut up a hundred and fifty horses and three hundred men. There was
some talk at the Gun Club of making a solemn experiment with it. But if
the horses consented to play their part, the men unfortunately were
wanting.

However that may be, the effect of these cannon was very deadly, and at
each discharge the combatants fell like ears before a scythe. After such
projectiles what signified the famous ball which, at Coutras, in 1587,
disabled twenty-five men; and the one which, at Zorndorff, in 1758,
killed forty fantassins; and in 1742, Kesseldorf's Austrian cannon, of
which every shot levelled seventy enemies with the ground? What was the
astonishing firing at Jena or Austerlitz, which decided the fate of the
battle? During the Federal war much more wonderful things had been seen.
At the battle of Gettysburg, a conical projectile thrown by a
rifle-barrel cut up a hundred and seventy-three Confederates, and at the
passage of the Potomac a Rodman ball sent two hundred and fifteen
Southerners into an evidently better world. A formidable mortar must
also be mentioned, invented by J.T. Maston, a distinguished member and
perpetual secretary of the Gun Club, the result of which was far more
deadly, seeing that, at its trial shot, it killed three hundred and
thirty-seven persons--by bursting, it is true.

What can be added to these figures, so eloquent in themselves? Nothing.
So the following calculation obtained by the statistician Pitcairn will
be admitted without contestation: by dividing the number of victims
fallen under the projectiles by that of the members of the Gun Club, he
found that each one of them had killed, on his own account, an average
of two thousand three hundred and seventy-five men and a fraction.

By considering such a result it will be seen that the single
preoccupation of this learned society was the destruction of humanity
philanthropically, and the perfecting of firearms considered as
instruments of civilisation. It was a company of Exterminating Angels,
at bottom the best fellows in the world.

It must be added that these Yankees, brave as they have ever proved
themselves, did not confine themselves to formulae, but sacrificed
themselves to their theories. Amongst them might be counted officers of
every rank, those who had just made their _début_ in the profession of
arms, and those who had grown old on their gun-carriage. Many whose
names figured in the book of honour of the Gun Club remained on the
field of battle, and of those who came back the greater part bore marks
of their indisputable valour. Crutches, wooden legs, articulated arms,
hands with hooks, gutta-percha jaws, silver craniums, platinum noses,
nothing was wanting to the collection; and the above-mentioned Pitcairn
likewise calculated that in the Gun Club there was not quite one arm
amongst every four persons, and only two legs amongst six.

But these valiant artillerymen paid little heed to such small matters,
and felt justly proud when the report of a battle stated the number of
victims at tenfold the quantity of projectiles expended.

One day, however, a sad and lamentable day, peace was signed by the
survivors of the war, the noise of firing gradually ceased, the mortars
were silent, the howitzers were muzzled for long enough, and the cannon,
with muzzles depressed, were stored in the arsenals, the shots were
piled up in the parks, the bloody reminiscences were effaced, cotton
shrubs grew magnificently on the well-manured fields, mourning garments
began to be worn-out, as well as sorrow, and the Gun Club had nothing
whatever to do.

Certain old hands, inveterate workers, still went on with their
calculations in ballistics; they still imagined gigantic bombs and
unparalleled howitzers. But what was the use of vain theories that could
not be put in practice? So the saloons were deserted, the servants slept
in the antechambers, the newspapers grew mouldy on the tables, from dark
corners issued sad snores, and the members of the Gun Club, formerly so
noisy, now reduced to silence by the disastrous peace, slept the sleep
of Platonic artillery!

"This is distressing," said brave Tom Hunter, whilst his wooden legs
were carbonising at the fireplace of the smoking-room. "Nothing to do!
Nothing to look forward to! What a tiresome existence! Where is the time
when cannon awoke you every morning with its joyful reports?"

"That time is over," answered dandy Bilsby, trying to stretch the arms
he had lost. "There was some fun then! You invented an howitzer, and it
was hardly cast before you ran to try it on the enemy; then you went
back to the camp with an encouragement from Sherman, or a shake of the
hands from MacClellan! But now the generals have gone back to their
counters, and instead of cannon-balls they expedite inoffensive cotton
bales! Ah, by Saint Barb! the future of artillery is lost to America!"

"Yes, Bilsby," cried Colonel Blomsberry, "it is too bad! One fine
morning you leave your tranquil occupations, you are drilled in the use
of arms, you leave Baltimore for the battle-field, you conduct yourself
like a hero, and in two years, three years at the latest, you are
obliged to leave the fruit of so many fatigues, to go to sleep in
deplorable idleness, and keep your hands in your pockets."

The valiant colonel would have found it very difficult to give such a
proof of his want of occupation, though it was not the pockets that were
wanting.

"And no war in prospect, then," said the famous J.T. Maston, scratching
his gutta-percha cranium with his steel hook; "there is not a cloud on
the horizon now that there is so much to do in the science of artillery!
I myself finished this very morning a diagram with plan, basin, and
elevation of a mortar destined to change the laws of warfare!"

"Indeed!" replied Tom Hunter, thinking involuntarily of the Honourable
J.T. Maston's last essay.

"Indeed!" answered Maston. "But what is the use of the good results of
such studies and so many difficulties conquered? It is mere waste of
time. The people of the New World seem determined to live in peace, and
our bellicose _Tribune_ has gone as far as to predict approaching
catastrophes due to the scandalous increase of population!"

"Yet, Maston," said Colonel Blomsberry, "they are always fighting in
Europe to maintain the principle of nationalities!"

"What of that?"

"Why, there might be something to do over there, and if they accepted
our services--"

"What are you thinking of?" cried Bilsby. "Work at ballistics for the
benefit of foreigners!"

"Perhaps that would be better than not doing it at all," answered the
colonel.

"Doubtless," said J.T. Maston, "it would be better, but such an
expedient cannot be thought of."

"Why so?" asked the colonel.

"Because their ideas of advancement would be contrary to all our
American customs. Those folks seem to think that you cannot be a
general-in-chief without having served as second lieutenant, which comes
to the same as saying that no one can point a gun that has not cast one.
Now that is simply--"

"Absurd!" replied Tom Hunter, whittling the arms of his chair with his
bowie-knife; "and as things are so, there is nothing left for us but to
plant tobacco or distil whale-oil!"

"What!" shouted J.T. Maston, "shall we not employ these last years of
our existence in perfecting firearms? Will not a fresh opportunity
present itself to try the ranges of our projectiles? Will the atmosphere
be no longer illuminated by the lightning of our cannons? Won't some
international difficulty crop up that will allow us to declare war
against some transatlantic power? Won't France run down one of our
steamers, or won't England, in defiance of the rights of nations, hang
up three or four of our countrymen?"

"No, Maston," answered Colonel Blomsberry; "no such luck! No, not one of
those incidents will happen; and if one did, it would be of no use to
us. American sensitiveness is declining daily, and we are going to the
dogs!"

"Yes, we are growing quite humble," replied Bilsby.

"And we are humiliated!" answered Tom Hunter.

"All that is only too true," replied J.T. Maston, with fresh vehemence.
"There are a thousand reasons for fighting floating about, and still we
don't fight! We economise legs and arms, and that to the profit of folks
that don't know what to do with them. Look here, without looking any
farther for a motive for war, did not North America formerly belong to
the English?"

"Doubtless," answered Tom Hunter, angrily poking the fire with the end
of his crutch.

"Well," replied J.T. Maston, "why should not England in its turn belong
to the Americans?"

"It would be but justice," answered Colonel Blomsberry.

"Go and propose that to the President of the United States," cried J.T.
Maston, "and see what sort of a reception you would get."

"It would not be a bad reception," murmured Bilsby between the four
teeth he had saved from battle.

"I'faith," cried J.T. Maston, "they need not count upon my vote in the
next elections."

"Nor upon ours," answered with common accord these bellicose invalids.

"In the meantime," continued J.T. Maston, "and to conclude, if they do
not furnish me with the opportunity of trying my new mortar on a real
battle-field, I shall send in my resignation as member of the Gun Club,
and I shall go and bury myself in the backwoods of Arkansas."

"We will follow you there," answered the interlocutors of the
enterprising J.T. Maston.

Things had come to that pass, and the club, getting more excited, was
menaced with approaching dissolution, when an unexpected event came to
prevent so regrettable a catastrophe.

The very day after the foregoing conversation each member of the club
received a circular couched in these terms:--

"Baltimore, October 3rd.

"The president of the Gun Club has the honour to inform his colleagues
that at the meeting on the 5th ultimo he will make them a communication
of an extremely interesting nature. He therefore begs that they, to the
suspension of all other business, will attend, in accordance with the
present invitation,

"Their devoted colleague,

"IMPEY BARBICANE, P.G.C."




CHAPTER II.

PRESIDENT BARBICANE'S COMMUNICATION.


On the 5th of October, at 8 p.m., a dense crowd pressed into the saloons
of the Gun Club, 21, Union-square. All the members of the club residing
at Baltimore had gone on the invitation of their president. The express
brought corresponding members by hundreds, and if the meeting-hall had
not been so large, the crowd of _savants_ could not have found room in
it; they overflowed into the neighbouring rooms, down the passages, and
even into the courtyards; there they ran against the populace who were
pressing against the doors, each trying to get into the front rank, all
eager to learn the important communication of President Barbicane, all
pressing, squeezing, crushing with that liberty of action peculiar to
the masses brought up in the idea of self-government.

That evening any stranger who might have chanced to be in Baltimore
could not have obtained a place at any price in the large hall; it was
exclusively reserved to residing or corresponding members; no one else
was admitted; and the city magnates, common councillors, and select men
were compelled to mingle with their inferiors in order to catch stray
news from the interior.

The immense hall presented a curious spectacle; it was marvellously
adapted to the purpose for which it was built. Lofty pillars formed of
cannon, superposed upon huge mortars as a base, supported the fine
ironwork of the arches--real cast-iron lacework.

Trophies of blunderbusses, matchlocks, arquebuses, carbines, all sorts
of ancient or modern firearms, were picturesquely enlaced against the
walls. The gas, in full flame, came out of a thousand revolvers grouped
in the form of lustres, whilst candlesticks of pistols, and candelabra
made of guns done up in sheaves, completed this display of light. Models
of cannons, specimens of bronze, targets spotted with shot-marks,
plaques broken by the shock of the Gun Club, balls, assortments of
rammers and sponges, chaplets of shells, necklaces of projectiles,
garlands of howitzers--in a word, all the tools of the artilleryman
surprised the eyes by their wonderful arrangement, and induced a belief
that their real purpose was more ornamental than deadly.

In the place of honour was seen, covered by a splendid glass case, a
piece of breech, broken and twisted under the effort of the powder--a
precious fragment of J.T. Maston's cannon.

At the extremity of the hall the president, assisted by four
secretaries, occupied a wide platform. His chair, placed on a carved
gun-carriage, was modelled upon the powerful proportions of a 32-inch
mortar; it was pointed at an angle of 90 degs., and hung upon trunnions
so that the president could use it as a rocking-chair, very agreeable in
great heat. Upon the desk, a huge iron plate, supported upon six
carronades, stood a very tasteful inkstand, made of a beautifully-chased
Spanish piece, and a report-bell, which, when required, went off like a
revolver. During the vehement discussions this new sort of bell scarcely
sufficed to cover the voices of this legion of excited artillerymen.

In front of the desk, benches, arranged in zigzags, like the
circumvallations of intrenchment, formed a succession of bastions and
curtains where the members of the Gun Club took their seats; and that
evening, it may be said, there were plenty on the ramparts. The
president was sufficiently known for all to be assured that he would not
have called together his colleagues without a very great motive.

Impey Barbicane was a man of forty, calm, cold, austere, of a singularly
serious and concentrated mind, as exact as a chronometer, of an
imperturbable temperament and immovable character; not very chivalrous,
yet adventurous, and always bringing practical ideas to bear on the
wildest enterprises; an essential New-Englander, a Northern colonist,
the descendant of those Roundheads so fatal to the Stuarts, and the
implacable enemy of the Southern gentlemen, the ancient cavaliers of the
mother country--in a word, a Yankee cast in a single mould.

Barbicane had made a great fortune as a timber-merchant; named director
of artillery during the war, he showed himself fertile in inventions;
enterprising in his ideas, he contributed powerfully to the progress of
ballistics, gave an immense impetus to experimental researches.

He was a person of average height, having, by a rare exception in the
Gun Club, all his limbs intact. His strongly-marked features seemed to
be drawn by square and rule, and if it be true that in order to guess
the instincts of a man one must look at his profile, Barbicane seen
thus offered the most certain indications of energy, audacity, and
_sang-froid_.

At that moment he remained motionless in his chair, mute, absorbed, with
an inward look sheltered under his tall hat, a cylinder of black silk,
which seems screwed down upon the skull of American men.

His colleagues talked noisily around him without disturbing him; they
questioned one another, launched into the field of suppositions,
examined their president, and tried, but in vain, to make out the _x_ of
his imperturbable physiognomy.

Just as eight o'clock struck from the fulminating clock of the large
hall, Barbicane, as if moved by a spring, jumped up; a general silence
ensued, and the orator, in a slightly emphatic tone, spoke as follows:--

"Brave colleagues,--It is some time since an unfruitful peace plunged
the members of the Gun Club into deplorable inactivity. After a period
of some years, so full of incidents, we have been obliged to abandon our
works and stop short on the road of progress. I do not fear to proclaim
aloud that any war which would put arms in our hands again would be
welcome--"

"Yes, war!" cried impetuous J.T. Maston.

"Hear, hear!" was heard on every side.

"But war," said Barbicane, "war is impossible under actual
circumstances, and, whatever my honourable interrupter may hope, long
years will elapse before our cannons thunder on a field of battle. We
must, therefore, make up our minds to it, and seek in another order of
ideas food for the activity by which we are devoured."

The assembly felt that its president was coming to the delicate point;
it redoubled its attention.

"A few months ago, my brave colleagues," continued Barbicane, "I asked
myself if, whilst still remaining in our speciality, we could not
undertake some grand experiment worthy of the nineteenth century, and if
the progress of ballistics would not allow us to execute it with
success. I have therefore sought, worked, calculated, and the conviction
has resulted from my studies that we must succeed in an enterprise that
would seem impracticable in any other country. This project, elaborated
at length, will form the subject of my communication; it is worthy of
you, worthy of the Gun Club's past history, and cannot fail to make a
noise in the world!"

"Much noise?" cried a passionate artilleryman.

"Much noise in the true sense of the word," answered Barbicane.

"Don't interrupt!" repeated several voices.

"I therefore beg of you, my brave colleagues," resumed the president,
"to grant me all your attention."

A shudder ran through the assembly. Barbicane, having with a rapid
gesture firmly fixed his hat on his head, continued his speech in a calm
tone:--

"There is not one of you, brave colleagues, who has not seen the moon,
or, at least, heard of It. Do not be astonished if I wish to speak to
you about the Queen of Night. It is, perhaps, our lot to be the
Columbuses of this unknown world. Understand me, and second me as much
as you can, I will lead you to its conquest, and its name shall be
joined to those of the thirty-six States that form the grand country of
the Union!"

"Hurrah for the moon!" cried the Gun Club with one voice.

"The moon has been much studied," resumed Barbicane; "its mass, density,
weight, volume, constitution, movements, distance, the part it plays in
the solar world, are all perfectly determined; selenographic maps have
been drawn with a perfection that equals, if it does not surpass, those
of terrestrial maps; photography has given to our satellite proofs of
incomparable beauty--in a word, all that the sciences of mathematics,
astronomy, geology, and optics can teach is known about the moon; but
until now no direct communication with it has ever been established."

A violent movement of interest and surprise welcomed this sentence of
the orator.

"Allow me," he resumed, "to recall to you in few words how certain
ardent minds, embarked upon imaginary journeys, pretended to have
penetrated the secrets of our satellite. In the seventeenth century a
certain David Fabricius boasted of having seen the inhabitants of the
moon with his own eyes. In 1649 a Frenchman, Jean Baudoin, published his
_Journey to the Moon by Dominique Gonzales, Spanish Adventurer_. At the
same epoch Cyrano de Bergerac published the celebrated expedition that
had so much success in France. Later on, another Frenchman (that nation
took a great deal of notice of the moon), named Fontenelle, wrote his
_Plurality of Worlds_, a masterpiece of his time; but science in its
progress crushes even masterpieces! About 1835, a pamphlet, translated
from the _New York American_, related that Sir John Herschel, sent to
the Cape of Good Hope, there to make astronomical observations, had, by
means of a telescope, perfected by interior lighting, brought the moon
to within a distance of eighty yards. Then he distinctly perceived
caverns in which lived hippopotami, green mountains with golden borders,
sheep with ivory horns, white deer, and inhabitants with membraneous
wings like those of bats. This treatise, the work of an American named
Locke, had a very great success. But it was soon found out that it was a
scientific mystification, and Frenchmen were the first to laugh at it."

"Laugh at an American!" cried J.T. Maston; "but that's a _casus belli_!"

"Be comforted, my worthy friend; before Frenchmen laughed they were
completely taken in by our countryman. To terminate this rapid history,
I may add that a certain Hans Pfaal, of Rotterdam, went up in a balloon
filled with a gas made from azote, thirty-seven times lighter than
hydrogen, and reached the moon after a journey of nineteen days. This
journey, like the preceding attempts, was purely imaginary, but it was
the work of a popular American writer of a strange and contemplative
genius. I have named Edgar Poe!"

"Hurrah for Edgar Poe!" cried the assembly, electrified by the words of
the president.

"I have now come to an end of these attempts which I may call purely
literary, and quite insufficient to establish any serious communications
with the Queen of Night. However, I ought to add that some practical
minds tried to put themselves into serious communication with her. Some
years ago a German mathematician proposed to send a commission of
_savants_ to the steppes of Siberia. There, on the vast plains, immense
geometrical figures were to be traced by means of luminous reflectors;
amongst others, the square of the hypothenuse, vulgarly called the
'Ass's Bridge.' 'Any intelligent being,' said the mathematician, 'ought
to understand the scientific destination of that figure. The Selenites
(inhabitants of the moon), if they exist, will answer by a similar
figure, and, communication once established, it will be easy to create
an alphabet that will allow us to hold converse with the inhabitants of
the moon.' Thus spoke the German mathematician, but his project was not
put into execution, and until now no direct communication has existed
between the earth and her satellite. But it was reserved to the
practical genius of Americans to put itself into communication with the
sidereal world. The means of doing so are simple, easy, certain,
unfailing, and will make the subject of my proposition."

A hubbub and tempest of exclamations welcomed these words. There was not
one of the audience who was not dominated and carried away by the words
of the orator.

"Hear, hear! Silence!" was heard on all sides.

When the agitation was calmed down Barbicane resumed, in a graver tone,
his interrupted speech.

"You know," said he, "what progress the science of ballistics has made
during the last few years, and to what degree of perfection firearms
would have been brought if the war had gone on. You are not ignorant in
general that the power of resistance of cannons and the expansive force
of powder are unlimited. Well, starting from that principle, I asked
myself if, by means of sufficient apparatus, established under
determined conditions of resistance, it would not be possible to send a
cannon-ball to the moon!"

At these words an "Oh!" of stupefaction escaped from a thousand panting
breasts; then occurred a moment of silence, like the profound calm that
precedes thunder. In fact, the thunder came, but a thunder of applause,
cries, and clamour which made the meeting-hall shake again. The
president tried to speak; he could not. It was only at the end of ten
minutes that he succeeded in making himself heard.

"Let me finish," he resumed coldly. "I have looked at the question in
all its aspects, and from my indisputable calculations it results that
any projectile, hurled at an initial speed of twelve thousand yards a
second, and directed at the moon, must necessarily reach her. I have,
therefore, the honour of proposing to you, my worthy colleagues, the
attempting of this little experiment."




CHAPTER III.

EFFECT OF PRESIDENT BARBICANE'S COMMUNICATION.


It is impossible to depict the effect produced by the last words of the
honourable president. What cries! what vociferations! What a succession
of groans, hurrahs, cheers, and all the onomatopoeia of which the
American language is so full. It was an indescribable hubbub and
disorder. Mouths, hands, and feet made as much noise as they could. All
the weapons in this artillery museum going off at once would not have
more violently agitated the waves of sound. That is not surprising;
there are cannoneers nearly as noisy as their cannons.

Barbicane remained calm amidst these enthusiastic clamours; perhaps he
again wished to address some words to his colleagues, for his gestures
asked for silence, and his fulminating bell exhausted itself in violent
detonations; it was not even heard. He was soon dragged from his chair,
carried in triumph, and from the hands of his faithful comrades he
passed into those of the no less excited crowd.

Nothing can astonish an American. It has often been repeated that the
word "impossible" is not French; the wrong dictionary must have been
taken by mistake. In America everything is easy, everything is simple,
and as to mechanical difficulties, they are dead before they are born.
Between the Barbicane project and its realisation not one true Yankee
would have allowed himself to see even the appearance of a difficulty.
As soon said as done.

The triumphant march of the president was prolonged during the evening.
A veritable torchlight procession--Irish, Germans, Frenchmen,
Scotchmen--all the heterogeneous individuals that compose the population
of Maryland--shouted in their maternal tongue, and the cheering was
unanimous.

Precisely as if she knew it was all about her, the moon shone out then
with serene magnificence, eclipsing other lights with her intense
irradiation. All the Yankees directed their eyes towards the shining
disc; some saluted her with their hands, others called her by the
sweetest names; between eight o'clock and midnight an optician in
Jones-Fall-street made a fortune by selling field-glasses. The Queen of
Night was looked at through them like a lady of high life. The Americans
acted in regard to her with the freedom of proprietors. It seemed as if
the blonde Phoebe belonged to these enterprising conquerors and already
formed part of the Union territory. And yet the only question was that
of sending a projectile--a rather brutal way of entering into
communication even with a satellite, but much in vogue amongst civilised
nations.

Midnight had just struck, and the enthusiasm did not diminish; it was
kept up in equal doses in all classes of the population; magistrates,
_savants_, merchants, tradesmen, street-porters, intelligent as well as
"green" men were moved even in their most delicate fibres. It was a
national enterprise; the high town, low town, the quays bathed by the
waters of the Patapsco, the ships, imprisoned in their docks, overflowed
with crowds intoxicated with joy, gin, and whisky; everybody talked,
argued, perorated, disputed, approved, and applauded, from the gentleman
comfortably stretched on the bar-room couch before his glass of
"sherry-cobbler" to the waterman who got drunk upon "knock-me-down" in
the dark taverns of Fell's Point.

However, about 2 a.m. the emotion became calmer. President Barbicane
succeeded in getting home almost knocked to pieces. A Hercules could not
have resisted such enthusiasm. The crowd gradually abandoned the squares
and streets. The four railroads of Ohio, Susquehanna, Philadelphia, and
Washington, which converge at Baltimore, took the heterogeneous
population to the four corners of the United States, and the town
reposed in a relative tranquillity.

It would be an error to believe that during this memorable evening
Baltimore alone was agitated. The large towns of the Union, New York,
Boston, Albany, Washington, Richmond, New Orleans, Charlestown, La
Mobile of Texas, Massachusetts, Michigan, and Florida, all shared in the
delirium. The thirty thousand correspondents of the Gun Club were
acquainted with their president's letter, and awaited with equal
impatience the famous communication of the 5th of October. The same
evening as the orator uttered his speech it ran along the telegraph
wires, across the states of the Union, with a speed of 348,447 miles a
second. It may, therefore, be said with absolute certainty that at the
same moment the United States of America, ten times as large as France,
cheered with a single voice, and twenty-five millions of hearts, swollen
with pride, beat with the same pulsation.

The next day five hundred daily, weekly, monthly, or bi-monthly
newspapers took up the question; they examined it under its different
aspects--physical, meteorological, economical, or moral, from a
political or social point of view. They debated whether the moon was a
finished world, or if she was not still undergoing transformation. Did
she resemble the earth in the time when the atmosphere did not yet
exist? What kind of spectacle would her hidden hemisphere present to our
terrestrial spheroid? Granting that the question at present was simply
about sending a projectile to the Queen of Night, every one saw in that
the starting-point of a series of experiments; all hoped that one day
America would penetrate the last secrets of the mysterious orb, and some
even seemed to fear that her conquest would disturb the balance of power
in Europe.

The project once under discussion, not one of the papers suggested a
doubt of its realisation; all the papers, treatises, bulletins, and
magazines published by scientific, literary, or religious societies
enlarged upon its advantages, and the "Natural History Society" of
Boston, the "Science and Art Society" of Albany, the "Geographical and
Statistical Society" of New York, the "American Philosophical Society"
of Philadelphia, and the "Smithsonian Institution" of Washington sent in
a thousand letters their congratulations to the Gun Club, with immediate
offers of service and money.

It may be said that no proposition ever had so many adherents; there was
no question of hesitations, doubts, or anxieties. As to the jokes,
caricatures, and comic songs that would have welcomed in Europe, and,
above all, in France, the idea of sending a projectile to the moon, they
would have been turned against their author; all the "life-preservers"
in the world would have been powerless to guarantee him against the
general indignation. There are things that are not to be laughed at in
the New World.

Impey Barbicane became from that day one of the greatest citizens of the
United States, something like a Washington of science, and one fact
amongst several will serve to show the sudden homage which was paid by a
nation to one man.

Some days after the famous meeting of the Gun Club the manager of an
English company announced at the Baltimore Theatre a representation of
_Much Ado About Nothing_, but the population of the town, seeing in the
title a damaging allusion to the projects of President Barbicane,
invaded the theatre, broke the seats, and forced the unfortunate manager
to change the play. Like a sensible man, the manager, bowing to public
opinion, replaced the offending comedy by _As You Like It_, and for
several weeks he had fabulous houses.




CHAPTER IV.

ANSWER FROM THE CAMBRIDGE OBSERVATORY.


In the meantime Barbicane did not lose an instant amidst the enthusiasm
of which he was the object. His first care was to call together his
colleagues in the board-room of the Gun Club. There, after a debate,
they agreed to consult astronomers about the astronomical part of their
enterprise. Their answer once known, they would then discuss the
mechanical means, and nothing would be neglected to assure the success
of their great experiment.

A note in precise terms, containing special questions, was drawn up and
addressed to the observatory of Cambridge in Massachusetts. This town,
where the first University of the United States was founded, is justly
celebrated for its astronomical staff. There are assembled the greatest
men of science; there is the powerful telescope which enabled Bond to
resolve the nebula of Andromeda and Clarke to discover the satellite of
Sirius. This celebrated institution was, therefore, worthy in every way
of the confidence of the Gun Club.

After two days the answer, impatiently awaited, reached the hands of
President Barbicane.

It ran as follows:--

"_The Director of the Cambridge Observatory to the President of the Gun
Club at Baltimore_.

"On the receipt of your favour of the 6th inst., addressed to the
Observatory of Cambridge in the name of the members of the Baltimore
Gun Club, we immediately called a meeting of our staff, who have deemed
it expedient to answer as follows:--

"The questions proposed to it were these:--

"'1. Is it possible to send a projectile to the moon?

"'2. What is the exact distance that separates the earth and her
satellite?

"'3. What would be the duration of the projectile's transit to which a
sufficient initial speed had been given, and consequently at what moment
should it be hurled so as to reach the moon at a particular point?

"'4. At what moment would the moon present the most favourable position
for being reached by the projectile?

"'5. What point in the heavens ought the cannon, destined to hurl the
projectile, be aimed at?

"'6. What place in the heavens will the moon occupy at the moment when
the projectile will start?'

"Regarding question No. 1, 'Is it possible to send a projectile to the
moon?'

"Yes, it is possible to send a projectile to the moon if it is given an
initial velocity of 1,200 yards a second. Calculations prove that this
speed is sufficient. In proportion to the distance from the earth the
force of gravitation diminishes in an inverse ratio to the square of the
distance--that is to say, that for a distance three times greater that
force is nine times less. In consequence, the weight of the projectile
will decrease rapidly, and will end by being completely annulled at the
moment when the attraction of the moon will be equal to that of the
earth--that is to say, at the 47/52 of the distance. At that moment the
projectile will have no weight at all, and if it clears that point it
will fall on to the moon only by the effect of lunar gravitation. The
theoretic possibility of the experiment is, therefore, quite
demonstrated; as to its success, that depends solely in the power of the
engine employed.

"Regarding question No. 2, 'What is the exact distance that separates
the earth from her satellite?'

"The moon does not describe a circle round the earth, but an ellipse, of
which our earth occupies one of the foci; the consequence is, therefore,
that at certain times it approaches nearer to, and at others recedes
farther from, the earth, or, in astronomical language, it has its apogee
and its perigee. At its apogee the moon is at 247,552 miles from the
earth, and at its perigee at 218,657 miles only, which makes a
difference of 28,895, or more than a ninth of the distance. The perigee
distance is, therefore, the one that should give us the basis of all
calculations.

"Regarding question No. 3, 'What would be the duration of the
projectile's transit to which a sufficient initial speed has been given,
and consequently at what moment should it be hurled so as to reach the
moon at a particular point?'

"If the projectile kept indefinitely the initial speed of 12,000 yards a
second, it would only take about nine hours to reach its destination;
but as that initial velocity will go on decreasing, it will happen,
everything calculated upon, that the projectile will take 300,000
seconds, or 83 hours and 20 minutes, to reach the point where the
terrestrial and lunar gravitations are equal, and from that point it
will fall upon the moon in 50,000 seconds, or 13 hours, 53 minutes, and
20 seconds. It must, therefore, be hurled 97 hours, 13 minutes, and 20
seconds before the arrival of the moon at the point aimed at.

"Regarding question No. 4, 'At what moment would the moon present the
most favourable position for being reached by the projectile?'

"According to what has been said above the epoch of the moon's perigee
must first be chosen, and at the moment when she will be crossing her
zenith, which will still further diminish the entire distance by a
length equal to the terrestrial radius--i.e., 3,919 miles; consequently,
the passage to be accomplished will be 214,976 miles. But the moon is
not always at her zenith when she reaches her perigee, which is once a
month. She is only under the two conditions simultaneously at long
intervals of time. This coincidence of perigee and zenith must be waited
for. It happens fortunately that on December 4th of next year the moon
will offer these two conditions; at midnight she will be at her perigee
and her zenith--that is to say, at her shortest distance from the earth
and at her zenith at the same time.

"Regarding question No. 5, 'At what point in the heavens ought the
cannon destined to hurl the projectile be aimed?'

"The preceding observations being admitted, the cannon ought to be aimed
at the zenith of the place (the zenith is the spot situated vertically
above the head of a spectator), so that its range will be perpendicular
to the plane of the horizon, and the projectile will pass the soonest
beyond the range of terrestrial gravitation. But for the moon to reach
the zenith of a place that place must not exceed in latitude the
declination of the luminary--in other words, it must be comprised
between 0° and 28° of north or south latitude. In any other place the
range must necessarily be oblique, which would seriously affect the
success of the experiment.

"Regarding question No. 6, 'What place will the moon occupy In the
heavens at the moment of the projectile's departure?'

"At the moment when the projectile is hurled into space, the moon, which
travels forward 13° 10' 35" each day, will be four times as distant from
her zenith point--i.e., by 52° 42' 20", a space which corresponds to the
distance she will travel during the transit of the projectile. But as
the deviation which the rotatory movement of the earth will impart to
the shock must also be taken into account, and as the projectile cannot
reach the moon until after a deviation equal to sixteen radii of the
earth, which, calculated upon the moon's orbit, is equal to about 11°,
it is necessary to add these 11° to those caused by the
already-mentioned delay of the moon, or, in round numbers, 64°. Thus, at
the moment of firing, the visual radius applied to the moon will
describe with the vertical line of the place an angle of 64°.

"Such are the answers to the questions proposed to the Observatory of
Cambridge by the members of the Gun Club.

"To sum up--

"1st. The cannon must be placed in a country situated between 0° and 28°
of north or south latitude.

"2nd. It must be aimed at the zenith of the place.

"3rd. The projectile must have an initial speed of 12,000 yards a
second.

"4th. It must be hurled on December 1st of next year, at 10hrs. 46mins.
40secs. p.m.

"5th. It will meet the moon four days after its departure on December
4th, at midnight precisely, at the moment she arrives at her zenith.

"The members of the Gun Club ought, therefore, at once to commence the
labour necessitated by such an enterprise, and be ready to put them into
execution at the moment fixed upon, for they will not find the moon in
the same conditions of perigee and zenith till eighteen years and eleven
days later.

"The staff of the Observatory of Cambridge puts itself entirely at their
disposition for questions of theoretic astronomy, and begs to join its
congratulations to those of the whole of America.

"On behalf of the staff,

"J.M. BELFAST,

"_Director of the Observatory of Cambridge_."




CHAPTER V.

THE ROMANCE OF THE MOON.


A spectator endowed with infinite power of sight, and placed at the
unknown centre round which gravitates the universe, would have seen
myriads of atoms filling all space during the chaotic epoch of creation.
But by degrees, as centuries went on, a change took place; a law of
gravitation manifested itself which the wandering atoms obeyed; these
atoms, combined chemically according to their affinities, formed
themselves into molecules, and made those nebulous masses with which the
depths of the heavens are strewed.

These masses were immediately animated by a movement of rotation round
their central point. This centre, made of vague molecules, began to turn
on itself whilst progressively condensing; then, following the immutable
laws of mechanics, in proportion as its volume became diminished by
condensation its movement of rotation was accelerated, and these two
effects persisting, there resulted a principal planet, the centre of the
nebulous mass.

By watching attentively the spectator would then have seen other
molecules in the mass behave like the central planet, and condense in
the same manner by a movement of progressively-accelerated rotation, and
gravitate round it under the form of innumerable stars. The nebulae, of
which astronomers count nearly 5,000 at present, were formed.

Amongst these 5,000 nebulae there is one that men have called the Milky
Way, and which contains eighteen millions of stars, each of which has
become the centre of a solar world.

If the spectator had then specially examined amongst these eighteen
millions of stars one of the most modest and least brilliant, a star of
the fourth order, the one that proudly named itself the sun, all the
phenomena to which the formation of the universe is due would have
successively taken place under his eyes.

In fact, he would have perceived this sun still in its gaseous state,
and composed of mobile molecules; he would have perceived it turning on
its own axis to finish its work of concentration. This movement,
faithful to the laws of mechanics, would have been accelerated by the
diminution of volume, and a time would have come when the centrifugal
force would have overpowered the centripetal, which causes the molecules
all to tend towards the centre.

Then another phenomenon would have passed before the eyes of the
spectator, and the molecules situated in the plane of the equator would
have formed several concentric rings like that of Saturn round the sun.
In their turn these rings of cosmic matter, seized with a movement of
rotation round the central mass, would have been broken up into
secondary nebulae--that is to say, into planets.

If the spectator had then concentrated all his attention on these
planets he would have seen them behave exactly like the sun and give
birth to one or more cosmic rings, origin of those secondary bodies
which we call satellites.

Thus in going up from the atom to the molecule, from the molecule to the
nebulae, and from the nebulae to the principal star, from the principal
star to the sun, from the sun to the planet, and from the planet to the
satellite, we have the whole series of transformations undergone by the
celestial powers from the first days of the universe.

The sun seems lost amidst the immensities of the stellar universe, and
yet it is related, by actual theories of science, to the nebula of the
Milky Way. Centre of a world, and small as it appears amidst the
ethereal regions, it is still enormous, for its size is 1,400,000 times
that of the earth. Around it gravitate eight planets, struck off from
its own mass in the first days of creation. These are, in proceeding
from the nearest to the most distant, Mercury, Venus, the Earth, Mars,
Jupiter, Saturn, Uranus, and Neptune. Between Mars and Jupiter circulate
regularly other smaller bodies, the wandering _débris_, perhaps, of a
star broken up into thousands of pieces, of which the telescope has
discovered eighty-two at present. Some of these asteroids are so small
that they could be walked round in a single day by going at a gymnastic
pace.

Of these attendant bodies which the sun maintains in their elliptical
orbit by the great law of gravitation, some possess satellites of their
own. Uranus has eight, Saturn eight, Jupiter four, Neptune three
perhaps, and the Earth one; this latter, one of the least important of
the solar world, is called the Moon, and it is that one that the
enterprising genius of the Americans means to conquer.

The Queen of Night, from her relative proximity and the spectacle
rapidly renewed of her different phases, at first divided the attention
of the inhabitants of the earth with the sun; but the sun tires the
eyesight, and the splendour of its light forces its admirers to lower
their eyes.

The blonde Phoebe, more humane, graciously allows herself to be seen in
her modest grace; she is gentle to the eye, not ambitious, and yet she
sometimes eclipses her brother the radiant Apollo, without ever being
eclipsed by him. The Mahommedans understood what gratitude they owed to
this faithful friend of the earth, and they ruled their months at 29-1/2
days on her revolution.

The first people of the world dedicated particular worship to this
chaste goddess. The Egyptians called her Isis, the Phoenicians Astarte,
the Greeks Phoebe, daughter of Jupiter and Latona, and they explained
her eclipses by the mysterious visits of Diana and the handsome
Endymion. The mythological legend relates that the Nemean lion traversed
the country of the moon before its apparition upon earth, and the poet
Agesianax, quoted by Plutarch, celebrated in his sweet lines its soft
eyes, charming nose, and admirable mouth, formed by the luminous parts
of the adorable Selene.

But though the ancients understood the character, temperament, and, in a
word, moral qualities of the moon from a mythological point of view, the
most learned amongst them remained very ignorant of selenography.

Several astronomers, however, of ancient times discovered certain
particulars now confirmed by science. Though the Arcadians pretended
they had inhabited the earth at an epoch before the moon existed, though
Simplicius believed her immovable and fastened to the crystal vault,
though Tacitus looked upon her as a fragment broken off from the solar
orbit, and Clearch, the disciple of Aristotle, made of her a polished
mirror upon which were reflected the images of the ocean--though, in
short, others only saw in her a mass of vapours exhaled by the earth, or
a globe half fire and half ice that turned on itself, other _savants_,
by means of wise observations and without optical instruments, suspected
most of the laws that govern the Queen of Night.

Thus Thales of Miletus, B.C. 460, gave out the opinion that the moon was
lighted up by the sun. Aristarchus of Samos gave the right explanation
of her phases. Cleomenus taught that she shone by reflected light.
Berose the Chaldean discovered that the duration of her movement of
rotation was equal to that of her movement of revolution, and he thus
explained why the moon always presented the same side. Lastly,
Hipparchus, 200 years before the Christian era, discovered some
inequalities in the apparent movements of the earth's satellite.

These different observations were afterwards confirmed, and other
astronomers profited by them. Ptolemy in the second century, and the
Arabian Aboul Wefa in the tenth, completed the remarks of Hipparchus on
the inequalities that the moon undergoes whilst following the undulating
line of its orbit under the action of the sun. Then Copernicus, in the
fifteenth century, and Tycho Brahe, in the sixteenth, completely exposed
the system of the world and the part that the moon plays amongst the
celestial bodies.

At that epoch her movements were pretty well known, but very little of
her physical constitution was known. It was then that Galileo explained
the phenomena of light produced in certain phases by the existence of
mountains, to which he gave an average height of 27,000 feet.

After him, Hevelius, an astronomer of Dantzig, lowered the highest
altitudes to 15,000 feet; but his contemporary, Riccioli, brought them
up again to 21,000 feet.

Herschel, at the end of the eighteenth century, armed with a powerful
telescope, considerably reduced the preceding measurements. He gave a
height of 11,400 feet to the highest mountains, and brought down the
average of different heights to little more than 2,400 feet. But
Herschel was mistaken too, and the observations of Schroeter, Louville,
Halley, Nasmyth, Bianchini, Pastorff, Lohrman, Gruithuysen, and
especially the patient studies of MM. Boeer and Moedler, were necessary
to definitely resolve the question. Thanks to these _savants_, the
elevation of the mountains of the moon is now perfectly known. Boeer and
Moedler measured 1,905 different elevations, of which six exceed 15,000
feet and twenty-two exceed 14,400 feet. Their highest summit towers to a
height of 22,606 feet above the surface of the lunar disc.

At the same time the survey of the moon was being completed; she
appeared riddled with craters, and her essentially volcanic nature was
affirmed by each observation. From the absence of refraction in the rays
of the planets occulted by her it is concluded that she can have no
atmosphere. This absence of air entails absence of water; it therefore
became manifest that the Selenites, in order to live under such
conditions, must have a special organisation, and differ singularly from
the inhabitants of the earth.

Lastly, thanks to new methods, more perfected instruments searched the
moon without intermission, leaving not a point of her surface
unexplored, and yet her diameter measures 2,150 miles; her surface is
one-thirteenth of the surface of the globe, and her volume
one-forty-ninth of the volume of the terrestrial spheroid; but none of
her secrets could escape the astronomers' eyes, and these clever
_savants_ carried their wonderful observations still further.

Thus they remarked that when the moon was at her full the disc appeared
in certain places striped with white lines, and during her phases
striped with black lines. By prosecuting the study of these with greater
precision they succeeded in making out the exact nature of these lines.
They are long and narrow furrows sunk between parallel ridges, bordering
generally upon the edges of the craters; their length varied from ten to
one hundred miles, and their width was about 1,600 yards. Astronomers
called them furrows, and that was all they could do; they could not
ascertain whether they were the dried-up beds of ancient rivers or not.
The Americans hope, some day or other, to determine this geological
question. They also undertake to reconnoitre the series of parallel
ramparts discovered on the surface of the moon by Gruithuysen, a learned
professor of Munich, who considered them to be a system of elevated
fortifications raised by Selenite engineers. These two still obscure
points, and doubtless many others, can only be definitely settled by
direct communication with the moon.

As to the intensity of her light there is nothing more to be learnt; it
is 300,000 times weaker than that of the sun, and its heat has no
appreciable action upon thermometers; as to the phenomenon known as the
"ashy light," it is naturally explained by the effect of the sun's rays
transmitted from the earth to the moon, and which seem to complete the
lunar disc when it presents a crescent form during its first and last
phases.

Such was the state of knowledge acquired respecting the earth's
satellite which the Gun Club undertook to perfect under all its aspects,
cosmographical, geographical, geological, political, and moral.




CHAPTER VI.

WHAT IT IS IMPOSSIBLE TO IGNORE AND WHAT IS NO LONGER ALLOWED TO BE
BELIEVED IN THE UNITED STATES.


The immediate effect of Barbicane's proposition was that of bringing out
all astronomical facts relative to the Queen of Night. Everybody began
to study her assiduously. It seemed as if the moon had appeared on the
horizon for the first time, and that no one had ever seen her in the sky
before. She became the fashion; she was the lion of the day, without
appearing less modest on that account, and took her place amongst the
"stars" without being any the prouder. The newspapers revived old
anecdotes in which this "Sun of the wolves" played a part; they recalled
the influence which the ignorance of past ages had ascribed to her; they
sang about her in every tone; a little more and they would have quoted
her witty sayings; the whole of America was filled with selenomania.

The scientific journals treated the question which touched upon the
enterprise of the Gun Club more specially; they published the letter
from the Observatory of Cambridge, they commented upon it and approved
of it without reserve.

In short, even the most ignorant Yankee was no longer allowed to be
ignorant of a single fact relative to his satellite, nor, to the oldest
women amongst them, to have any superstitions about her left. Science
flooded them; it penetrated into their eyes and ears; it was impossible
to be an ass--in astronomy.

Until then many people did not know how the distance between the earth
and the moon had been calculated. This fact was taken advantage of to
explain to them that it was done by measuring the parallax of the moon.
If the word "parallax" seemed new to them, they were told it was the
angle formed by two straight lines drawn from either extremity of the
earth's radius to the moon. If they were in doubt about the perfection
of this method, it was immediately proved to them that not only was the
mean distance 234,347 miles, but that astronomers were right to within
seventy miles.

To those who were not familiar with the movements of the moon, the
newspapers demonstrated daily that she possesses two distinct movements,
the first being that of rotation upon her axis, the second that of
revolution round the earth, accomplishing both in the same time--that is
to say, in 27-1/3 days.

The movement of rotation is the one that causes night and day on the
surface of the moon, only there is but one day and one night in a lunar
month, and they each last 354-1/3 hours. But, happily, the face, turned
towards the terrestrial globe, is lighted by it with an intensity equal
to the light of fourteen moons. As to the other face, the one always
invisible, it has naturally 354 hours of absolute night, tempered only
by "the pale light that falls from the stars." This phenomenon is due
solely to the peculiarity that the movements of rotation and revolution
are accomplished in rigorously equal periods, a phenomenon which,
according to Cassini and Herschel, is common to the satellites of
Jupiter, and, very probably to the other satellites.

Some well-disposed but rather unyielding minds did not quite understand
at first how, if the moon invariably shows the same face to the earth
during her revolution, she describes one turn round herself in the same
period of time. To such it was answered--"Go into your dining-room, and
turn round the table so as always to keep your face towards the centre;
when your circular walk is ended you will have described one circle
round yourselves, since your eye will have successively traversed every
point of the room. Well, then, the room is the heavens, the table is the
earth, and you are the moon!"

And they go away delighted with the comparison.

Thus, then, the moon always presents the same face to the earth; still,
to be quite exact, it should be added that in consequence of certain
fluctuations from north to south and from west to east, called
libration, she shows rather more than the half of her disc, about 0.57.

When the ignoramuses knew as much as the director of the Cambridge
Observatory about the moon's movement of rotation they began to make
themselves uneasy about her movement of revolution round the earth, and
twenty scientific reviews quickly gave them the information they wanted.
They then learnt that the firmament, with its infinite stars, may be
looked upon as a vast dial upon which the moon moves, indicating the
time to all the inhabitants of the earth; that it is in this movement
that the Queen of Night shows herself in her different phases, that she
is full when she is in opposition with the sun--that is to say, when the
three bodies are on a line with each other, the earth being in the
centre; that the moon is new when she is in conjunction with the
sun--that is to say, when she is between the sun and the earth; lastly,
that the moon is in her first or last quarter when she makes, with the
sun and the earth, a right angle of which she occupies the apex.

Some perspicacious Yankees inferred in consequence that eclipses could
only take place at the periods of conjunction or opposition, and their
reasoning was just. In conjunction the moon can eclipse the sun, whilst
in opposition it is the earth that can eclipse him in her turn; and the
reason these eclipses do not happen twice in a lunar month is because
the plane upon which the moon moves is elliptical like that of the
earth.

As to the height which the Queen of Night can attain above the horizon,
the letter from the Observatory of Cambridge contained all that can be
said about it. Every one knew that this height varies according to the
latitude of the place where the observation is taken. But the only zones
of the globe where the moon reaches her zenith--that is to say, where
she is directly above the heads of the spectators--are necessarily
comprised between the 28th parallels and the equator. Hence the
important recommendation given to attempt the experiment upon some point
in this part of the globe, in order that the projectile may be hurled
perpendicularly, and may thus more quickly escape the attraction of
gravitation. This was a condition essential to the success of the
enterprise, and public opinion was much exercised thereupon.

As to the line followed by the moon in her revolution round the earth,
the Observatory of Cambridge had demonstrated to the most ignorant that
it is an ellipse of which the earth occupies one of the foci. These
elliptical orbits are common to all the planets as well as to all the
satellites, and rational mechanism rigorously proves that it could not
be otherwise. It was clearly understood that when at her apogee the moon
was farthest from the earth, and when at her perigee she was nearest to
our planet.

This, therefore, was what every American knew whether he wished to or
no, and what no one could decently be ignorant of. But if these true
principles rapidly made their way, certain illusive fears and many
errors were with difficulty cleared away.

Some worthy people maintained, for instance, that the moon was an
ancient comet, which, whilst travelling along its elongated orbit round
the sun, passed near to the earth, and was retained in her circle of
attraction. The drawing-room astronomers pretended to explain thus the
burnt aspect of the moon, a misfortune of which they accused the sun.
Only when they were told to notice that comets have an atmosphere, and
that the moon has little or none, they did not know what to answer.

Others belonging to the class of "Shakers" manifested certain fears
about the moon; they had heard that since the observations made in the
times of the Caliphs her movement of revolution had accelerated in a
certain proportion; they thence very logically concluded that an
acceleration of movement must correspond to a diminution in the distance
between the two bodies, and that this double effect going on infinitely
the moon would one day end by falling into the earth. However, they were
obliged to reassure themselves and cease to fear for future generations
when they were told that according to the calculations of Laplace, an
illustrious French mathematician, this acceleration of movement was
restricted within very narrow limits, and that a proportional diminution
will follow it. Thus the equilibrium of the solar world cannot be
disturbed in future centuries.

Lastly there was the superstitious class of ignoramuses to be dealt
with; these are not content with being ignorant; they know what does not
exist, and about the moon they know a great deal. Some of them
considered her disc to be a polished mirror by means of which people
might see themselves from different points on the earth, and communicate
their thoughts to one another. Others pretended that out of 1,000 new
moons 950 had brought some notable change, such as cataclysms,
revolutions, earthquakes, deluges, &c.; they therefore believed in the
mysterious influence of the Queen of Night on human destinies; they
think that every Selenite is connected by some sympathetic tie with each
inhabitant of the earth; they pretend, with Dr. Mead, that she entirely
governs the vital system--that boys are born during the new moon and
girls during her last quarter, &c., &c. But at last it became necessary
to give up these vulgar errors, to come back to truth; and if the moon,
stripped of her influence, lost her prestige in the minds of courtesans
of every power, if some turned their backs on her, the immense majority
were in her favour. As to the Yankees, they had no other ambition than
that of taking possession of this new continent of the sky, and to plant
upon its highest summit the star-spangled banner of the United States of
America.




CHAPTER VII.

THE HYMN OF THE CANNON-BALL.


The Cambridge Observatory had, in its memorable letter of October 7th,
treated the question from an astronomical point of view--the mechanical
point had still to be treated. It was then that the practical
difficulties would have seemed insurmountable to any other country but
America; but there they were looked upon as play.

President Barbicane had, without losing any time, nominated a working
committee in the heart of the Gun Club. This committee was in three
sittings to elucidate the three great questions of the cannon, the
projectile, and the powder. It was composed of four members very learned
upon these matters. Barbicane had the casting vote, and with him were
associated General Morgan, Major Elphinstone, and, lastly, the
inevitable J.T. Maston, to whom were confided the functions of
secretary.

On the 8th of October the committee met at President Barbicane's house,
No. 3, Republican-street; as it was important that the stomach should
not trouble so important a debate, the four members of the Gun Club took
their seats at a table covered with sandwiches and teapots. J.T. Maston
immediately screwed his pen on to his steel hook and the business began.

Barbicane opened the meeting as follows:--

"Dear colleagues," said he, "we have to solve one of the more important
problems in ballistics--that greatest of sciences which treats of the
movement of projectiles--that is to say, of bodies hurled into space by
some power of impulsion and then left to themselves."

"Oh, ballistics, ballistics!" cried J.T. Maston in a voice of emotion.

"Perhaps," continued Barbicane, "the most logical thing would be to
consecrate this first meeting to discussing the engine."

"Certainly," answered General Morgan.

"Nevertheless," continued Barbicane, "after mature deliberation, it
seems to me that the question of the projectile ought to precede that of
the cannon, and that the dimensions of the latter ought to depend upon
the dimensions of the former."

J.T. Maston here interrupted the president, and was heard with the
attention which his magnificent past career deserved.

"My dear friends," said he in an inspired tone, "our president is right
to give the question of the projectile the precedence of every other;
the cannon-ball we mean to hurl at the moon will be our messenger, our
ambassador, and I ask your permission to regard it from an entirely
moral point of view."

This new way of looking at a projectile excited the curiosity of the
members of the committee; they therefore listened attentively to the
words of J.T. Maston.

"My dear colleagues," he continued, "I will be brief. I will lay aside
the material projectile--the projectile that kills--in order to take up
the mathematical projectile--the moral projectile. A cannon-ball is to
me the most brilliant manifestation of human power, and by creating it
man has approached nearest to the Creator!"

"Hear, hear!" said Major Elphinstone.

"In fact," cried the orator, "if God has made the stars and the planets,
man has made the cannon-ball--that criterion of terrestrial speed--that
reduction of bodies wandering in space which are really nothing but
projectiles. Let Providence claim the speed of electricity, light, the
stars, comets, planets, satellites, sound, and wind! But ours is the
speed of the cannon-ball--a hundred times greater than that of trains
and the fastest horses!"

J.T. Maston was inspired; his accents became quite lyrical as he chanted
the hymn consecrated to the projectile.

"Would you like figures?" continued he; "here are eloquent ones. Take
the simple 24 pounder; though it moves 80,000 times slower than
electricity, 64,000 times slower than light, 76 times slower than the
earth in her movement of translation round the sun, yet when it leaves
the cannon it goes quicker than sound; it goes at the rate of 14 miles a
minute, 840 miles an hour, 20,100 miles a day--that is to say, at the
speed of the points of the equator in the globe's movement of rotation,
7,336,500 miles a year. It would therefore take 11 days to get to the
moon, 12 years to get to the sun, 360 years to reach Neptune, at the
limits of the solar world. That is what this modest cannon-ball, the
work of our hands, can do! What will it be, therefore, when, with twenty
times that speed, we shall hurl it with a rapidity of seven miles a
second? Ah! splendid shot! superb projectile! I like to think you will
be received up there with the honours due to a terrestrial ambassador!"

Cheers greeted this brilliant peroration, and J.T. Maston, overcome with
emotion, sat down amidst the felicitations of his colleagues.

"And now," said Barbicane, "that we have given some time to poetry, let
us proceed to facts."

"We are ready," answered the members of the committee as they each
demolished half-a-dozen sandwiches.

"You know what problem it is we have to solve," continued the president;
"it is that of endowing a projectile with a speed of 12,000 yards per
second. I have every reason to believe that we shall succeed, but at
present let us see what speeds we have already obtained; General Morgan
can edify us upon that subject."

"So much the more easily," answered the general, "because during the war
I was a member of the Experiment Commission. The 100-pound cannon of
Dahlgren, with a range of 5,000 yards, gave their projectiles an initial
speed of 500 yards a second."

"Yes; and the Rodman Columbiad?" (the Americans gave the name of
"Columbiad" to their enormous engines of destruction) asked the
president.

"The Rodman Columbiad, tried at Fort Hamilton, near New York, hurled a
projectile, weighing half a ton, a distance of six miles, with a speed
of 800 yards a second, a result which neither Armstrong nor Palliser has
obtained in England."

"Englishmen are nowhere!" said J.T. Maston, pointing his formidable
steel hook eastward.

"Then," resumed Barbicane, "a speed of 800 yards is the maximum obtained
at present."

"Yes," answered Morgan.

"I might add, however," replied J.T. Maston, "that if my mortar had not
been blown up--"

"Yes, but it was blown up," replied Barbicane with a benevolent gesture.
"We must take the speed of 800 yards for a starting point. We must keep
till another meeting the discussion of the means used to produce this
speed; allow me to call your attention to the dimensions which our
projectile must have. Of course it must be something very different to
one of half a ton weight."

"Why?" asked the major.

"Because," quickly answered J.T. Maston, "it must be large enough to
attract the attention of the inhabitants of the moon, supposing there
are any."

"Yes," answered Barbicane, "and for another reason still more
important."

"What do you mean, Barbicane?" asked the major.

"I mean that it is not enough to send up a projectile and then to think
no more about it; we must follow it in its transit."

"What?" said the general, slightly surprised at the proposition.

"Certainly," replied Barbicane, like a man who knew what he was saying,
"or our experiment will be without result."

"But then," replied the major, "you will have to give the projectile
enormous dimensions."

"No. Please grant me your attention. You know that optical instruments
have acquired great perfection; certain telescopes increase objects six
thousand, and bring the moon to within a distance of forty miles. Now at
that distance objects sixty feet square are perfectly visible. The power
of penetration of the telescope has not been increased, because that
power is only exercised to the detriment of their clearness, and the
moon, which is only a reflecting mirror, does not send a light intense
enough for the telescopes to increase objects beyond that limit."

"Very well, then, what do you mean to do?" asked the general. "Do you
intend giving a diameter of sixty feet to your projectile?"

"No."

"You are not going to take upon yourself the task of making the moon
more luminous?"

"I am, though."

"That's rather strong!" exclaimed Maston.

"Yes, but simple," answered Barbicane. "If I succeed in lessening the
density of the atmosphere which the moon's light traverses, shall I not
render that light more intense?"

"Evidently."

"In order to obtain that result I shall only have to establish my
telescope upon some high mountain. We can do that."

"I give in," answered the major; "you have such a way of simplifying
things! What enlargement do you hope to obtain thus?"

"One of 48,000 times, which will bring the moon within five miles only,
and objects will only need a diameter of nine feet."

"Perfect!" exclaimed J.T. Maston; "then our projectile will have a
diameter of nine feet?"

"Precisely."

"Allow me to inform you, however," returned Major Elphinstone, "that its
weight will still be--"

"Oh, major!" answered Barbicane, "before discussing its weight allow me
to tell you that our forefathers did marvels in that way. Far be it from
me to pretend that ballistics have not progressed, but it is well to
know that in the Middle Ages surprising results were obtained, I dare
affirm, even more surprising than ours."

"Justify your statement," exclaimed J.T. Maston.

"Nothing is easier," answered Barbicane; "I can give you some examples.
At the siege of Constantinople by Mahomet II., in 1453, they hurled
stone bullets that weighed 1,900 lbs.; at Malta, in the time of its
knights, a certain cannon of Fort Saint Elme hurled projectiles weighing
2,500 lbs. According to a French historian, under Louis XI. a mortar
hurled a bomb of 500 lbs. only; but that bomb, fired at the Bastille, a
place where mad men imprisoned wise ones, fell at Charenton, where wise
men imprison mad ones."

"Very well," said J.T. Maston.

"Since, what have we seen, after all? The Armstrong cannons hurl
projectiles of 500 lbs., and the Rodman Columbiads projectiles of half a
ton! It seems, then, that if projectiles have increased in range they
have lost in weight. Now, if we turn our efforts in that direction, we
must succeed with the progress of the science in doubling the weight of
the projectiles of Mahomet II. and the Knights of Malta."

"That is evident," answered the major; "but what metal do you intend to
employ for your own projectile?"

"Simply cast-iron," said General Morgan.

"Cast-iron!" exclaimed J.T. Maston disdainfully, "that's very common for
a bullet destined to go to the moon."

"Do not let us exaggerate, my honourable friend," answered Morgan;
"cast-iron will be sufficient."

"Then," replied Major Elphinstone, "as the weight of the projectile is
in proportion to its volume, a cast-iron bullet, measuring nine feet in
diameter, will still be frightfully heavy."

"Yes, if it be solid, but not if it be hollow," said Barbicane.

"Hollow!--then it will be an obus?"

"In which we can put despatches," replied J.T. Maston, "and specimens of
our terrestrial productions."

"Yes, an obus," answered Barbicane; "that is what it must be; a solid
bullet of 108 inches would weigh more than 200,000 lbs., a weight
evidently too great; however, as it is necessary to give the projectile
a certain stability, I propose to give it a weight of 20,000 lbs."

"What will be the thickness of the metal?" asked the major.

"If we follow the usual proportions," replied Morgan, "a diameter of 800
inches demands sides two feet thick at least."

"That would be much too thick," answered Barbicane; "we do not want a
projectile to pierce armour-plate; it only needs sides strong enough to
resist the pressure of the powder-gas. This, therefore, is the
problem:--What thickness ought an iron obus to have in order to weigh
only 20,000 lbs.? Our clever calculator, Mr. Maston, will tell us at
once."

"Nothing is easier," replied the honourable secretary.

So saying, he traced some algebraical signs on the paper, amongst which
n^2 and x^2 frequently appeared. He even seemed to extract from them a
certain cubic root, and said--

"The sides must be hardly two inches thick."

"Will that be sufficient?" asked the major doubtfully.

"No," answered the president, "certainly not."

"Then what must be done?" resumed Elphinstone, looking puzzled.

"We must use another metal instead of cast-iron."

"Brass?" suggested Morgan.

"No; that is too heavy too, and I have something better than that to
propose."

"What?" asked the major.

"Aluminium," answered Barbicane.

"Aluminium!" cried all the three colleagues of the president.

"Certainly, my friends. You know that an illustrious French chemist,
Henry St. Claire Deville, succeeded in 1854 in obtaining aluminium in a
compact mass. This precious metal possesses the whiteness of silver, the
indestructibility of gold, the tenacity of iron, the fusibility of
copper, the lightness of glass; it is easily wrought, and is very widely
distributed in nature, as aluminium forms the basis of most rocks; it is
three times lighter than iron, and seems to have been created expressly
to furnish us with the material for our projectile!"

"Hurrah for aluminium!" cried the secretary, always very noisy in his
moments of enthusiasm.

"But, my dear president," said the major, "is not aluminium quoted
exceedingly high?"

"It was so," answered Barbicane; "when first discovered a pound of
aluminium cost 260 to 280 dollars; then it fell to twenty-seven dollars,
and now it is worth nine dollars."

"But nine dollars a pound," replied the major, who did not easily give
in; "that is still an enormous price."

"Doubtless, my dear major; but not out of reach."

"What will the projectile weigh, then?" asked Morgan.

"Here is the result of my calculations," answered Barbicane. "A
projectile of 108 inches in diameter and 12 inches thick would weigh, if
it were made of cast-iron, 67,440 lbs.; cast in aluminium it would be
reduced to 19,250 lbs."

"Perfect!" cried Maston; "that suits our programme capitally."

"Yes," replied the major; "but do you not know that at nine dollars a
pound the projectile would cost--"

"One hundred seventy-three thousand and fifty dollars. Yes, I know that;
but fear nothing, my friends; money for our enterprise will not be
wanting, I answer for that."

"It will be showered upon us," replied J.T. Maston.

"Well, what do you say to aluminium?" asked the president.

"Adopted," answered the three members of the committee.

"As to the form of the projectile," resumed Barbicane, "it is of little
consequence, since, once the atmosphere cleared, it will find itself in
empty space; I therefore propose a round ball, which will turn on
itself, if it so pleases."

Thus ended the first committee meeting. The question of the projectile
was definitely resolved upon, and J.T. Maston was delighted with the
idea of sending an aluminium bullet to the Selenites, "as it will give
them no end of an idea of the inhabitants of the earth!"




CHAPTER VIII.

HISTORY OF THE CANNON.


The resolutions passed at this meeting produced a great effect outside.
Some timid people grew alarmed at the idea of a projectile weighing
20,000 lbs. hurled into space. People asked what cannon could ever
transmit an initial speed sufficient for such a mass. The report of the
second meeting was destined to answer these questions victoriously.

The next evening the four members of the Gun Club sat down before fresh
mountains of sandwiches and a veritable ocean of tea. The debate then
began.

"My dear colleagues," said Barbicane, "we are going to occupy ourselves
with the construction of the engine, its length, form, composition, and
weight. It is probable that we shall have to give it gigantic
dimensions, but, however great our difficulties might be, our industrial
genius will easily overcome them. Will you please listen to me and
spare objections for the present? I do not fear them."

An approving murmur greeted this declaration.

"We must not forget," resumed Barbicane, "to what point our yesterday's
debate brought us; the problem is now the following: how to give an
initial speed of 12,000 yards a second to a shot 108 inches in diameter
weighing 20,000 lbs.

"That is the problem indeed," answered Major Elphinstone.

"When a projectile is hurled into space," resumed Barbicane, "what
happens? It is acted upon by three independent forces, the resistance of
the medium, the attraction of the earth, and the force of impulsion with
which it is animated. Let us examine these three forces. The resistance
of the medium--that is to say, the resistance of the air--is of little
importance. In fact, the terrestrial atmosphere is only forty miles
deep. With a rapidity of 12,000 yards the projectile will cross that in
five seconds, and this time will be short enough to make the resistance
of the medium insignificant. Let us now pass to the attraction of the
earth--that is to say, to the weight of the projectile. We know that
that weight diminishes in an inverse ratio to the square of
distances--in fact, this is what physics teach us: when a body left to
itself falls on the surface of the earth, it falls 15 feet in the first
second, and if the same body had to fall 257,542 miles--that is to say,
the distance between the earth and the moon--its fall would be reduced
to half a line in the first second. That is almost equivalent to
immobility. The question is, therefore, how progressively to overcome
this law of gravitation. How shall we do it? By the force of impulsion?"

"That is the difficulty," answered the major.

"That is it indeed," replied the president. "But we shall triumph over
it, for this force of impulsion we want depends on the length of the
engine and the quantity of powder employed, the one only being limited
by the resistance of the other. Let us occupy ourselves, therefore,
to-day with the dimensions to be given to the cannon. It is quite
understood that we can make it, as large as we like, seeing it will not
have to be moved."

"All that is evident," replied the general.

"Until now," said Barbicane, "the longest cannon, our enormous
Columbiads, have not been more than twenty-five feet long; we shall
therefore astonish many people by the dimensions we shall have to
adopt."

"Certainly," exclaimed J.T. Maston. "For my part, I ask for a cannon
half a mile long at least!"

"Half a mile!" cried the major and the general.

"Yes, half a mile, and that will be half too short."

"Come, Maston," answered Morgan, "you exaggerate."

"No, I do not," said the irate secretary; "and I really do not know why
you tax me with exaggeration."

"Because you go too far."

"You must know, sir," answered J.T. Maston, looking dignified, "that an
artilleryman is like a cannon-ball, he can never go too far."

The debate was getting personal, but the president interfered.

"Be calm, my friends, and let us reason it out. We evidently want a gun
of great range, as the length of the engine will increase the detention
of gas accumulated behind the projectile, but it is useless to overstep
certain limits."

"Perfectly," said the major.

"What are the usual rules in such a case? Ordinarily the length of a
cannon is twenty or twenty-five times the diameter of the projectile,
and it weighs 235 to 240 times its weight."

"It is not enough," cried J.T. Maston with impetuosity.

"I agree to that, my worthy friend, and in fact by keeping that
proportion for a projectile nine feet wide, weighing 30,000 lbs., the
engine would only have a length of 225 feet and a weight of 7,200,000
lbs."

"That is ridiculous," resumed J.T. Maston. "You might as well take a
pistol."

"I think so too," answered Barbicane; "that is why I propose to
quadruple that length, and to construct a cannon 900 feet long."

The general and the major made some objections, but, nevertheless, this
proposition, strongly supported by the secretary, was definitely
adopted.

"Now," said Elphinstone, "what thickness must we give its sides?"

"A thickness of six feet," answered Barbicane.

"You do not think of raising such a mass upon a gun-carriage?" asked the
major.

"That would be superb, however! said J.T. Maston.

"But impracticable," answered Barbicane. "No, I think of casting this
engine in the ground itself, binding it up with wrought-iron hoops, and
then surrounding it with a thick mass of stone and cement masonry. When
it is cast it must be bored with great precision so as to prevent
windage, so there will be no loss of gas, and all the expansive force of
the powder will be employed in the propulsion."

"Hurrah! hurrah!" said Maston, "we have our cannon."

"Not yet," answered Barbicane, calming his impatient friend with his
hand.

"Why not?"

"Because we have not discussed its form. Shall it be a cannon, howitzer,
or a mortar?"

"A cannon," replied Morgan.

"A howitzer," said the major.

"A mortar," exclaimed J.T. Maston.

A fresh discussion was pending, each taking the part of his favourite
weapon, when the president stopped it short.

"My friends," said he, "I will soon make you agree. Our Columbiad will
be a mixture of all three. It will be a cannon, because the
powder-magazine will have the same diameter as the chamber. It will be a
howitzer, because it will hurl an obus. Lastly, it will be a mortar,
because it will be pointed at an angle of 90°, and that without any
chance of recoil; unalterably fixed to the ground, it will communicate
to the projectile all the power of impulsion accumulated in its body."

"Adopted, adopted," answered the members of the committee.

"One question," said Elphinstone, "and will this _canobusomortar_ be
rifled?"

"No," answered Barbicane. "No, we must have an enormous initial speed,
and you know very well that a shot leaves a rifle less rapidly than a
smooth-bore."

"True," answered the major.

"Well, we have it this time," repeated J.T. Maston.

"Not quite yet," replied the president.

"Why not?"

"Because we do not yet know of what metal it will be made."

"Let us decide that without delay."

"I was going to propose it to you."

The four members of the committee each swallowed a dozen sandwiches,
followed by a cup of tea, and the debate recommenced.

"Our cannon," said Barbicane, "must be possessed of great tenacity,
great hardness; it must be infusible by heat, indissoluble, and
inoxydable by the corrosive action of acids."

"There is no doubt about that," answered the major, "and as we shall
have to employ a considerable quantity of metal we shall not have much
choice."

"Well, then," said Morgan, "I propose for the fabrication of the
Columbiad the best alloy hitherto known--that is to say, 100 parts of
copper, 12 of tin, and 6 of brass."

"My friends," answered the president, "I agree that this composition has
given excellent results; but in bulk it would be too dear and very hard
to work. I therefore think we must adopt an excellent material, but
cheap, such as cast-iron. Is not that your opinion, major?"

"Quite," answered Elphinstone.

"In fact," resumed Barbicane, "cast-iron costs ten times less than
bronze; it is easily melted, it is readily run into sand moulds, and is
rapidly manipulated; it is, therefore, an economy of money and time.
Besides, that material is excellent, and I remember that during the war
at the siege of Atlanta cast-iron cannon fired a thousand shots each
every twenty minutes without being damaged by it."

"Yet cast-iron is very brittle," answered Morgan.

"Yes, but it possesses resistance too. Besides, we shall not let it
explode, I can answer for that."

"It is possible to explode and yet be honest," replied J.T. Maston
sententiously.

"Evidently," answered Barbicane. "I am, therefore, going to beg our
worthy secretary to calculate the weight of a cast-iron cannon 900 feet
long, with an inner diameter of nine feet, and sides six feet thick."

"At once," answered J.T. Maston, and, as he had done the day before, he
made his calculations with marvellous facility, and said at the end of a
minute--

"This cannon will weigh 68,040 tons."

"And how much will that cost at two cents a pound?"

"Two million five hundred and ten thousand seven hundred and one
dollars."

J.T. Maston, the major, and the general looked at Barbicane anxiously.

"Well, gentlemen," said the president, "I can only repeat what I said to
you yesterday, don't be uneasy; we shall not want for money."

Upon this assurance of its president the committee broke up, after
having fixed a third meeting for the next evening.




CHAPTER IX.

THE QUESTION OF POWDERS.


The question of powder still remained to be settled. The public awaited
this last decision with anxiety. The size of the projectile and length
of the cannon being given, what would be the quantity of powder
necessary to produce the impulsion? This terrible agent, of which,
however, man has made himself master, was destined to play a part in
unusual proportions.

It is generally known and often asserted that gunpowder was invented in
the fourteenth century by the monk Schwartz, who paid for his great
discovery with his life. But it is nearly proved now that this story
must be ranked among the legends of the Middle Ages. Gunpowder was
invented by no one; it is a direct product of Greek fire, composed, like
it, of sulphur and saltpetre; only since that epoch these mixtures;
which were only dissolving, have been transformed into detonating
mixtures.

But if learned men know perfectly the false history of gunpowder, few
people are aware of its mechanical power. Now this is necessary to be
known in order to understand the importance of the question submitted to
the committee.

Thus a litre of gunpowder weighs about 2 lbs.; it produces, by burning,
about 400 litres of gas; this gas, liberated, and under the action of a
temperature of 2,400°, occupies the space of 4,000 litres. Therefore the
volume of powder is to the volume of gas produced by its deflagration as
1 to 400. The frightful force of this gas, when it is compressed into a
space 4,000 times too small, may be imagined.

This is what the members of the committee knew perfectly when, the next
day, they began their sitting. Major Elphinstone opened the debate.

"My dear comrades," said the distinguished chemist, "I am going to begin
with some unexceptionable figures, which will serve as a basis for our
calculation. The 24-lb. cannon-ball, of which the Hon. J.T. Maston spoke
the day before yesterday, is driven out of the cannon by 16 lbs. of
powder only."

"You are certain of your figures?" asked Barbicane.

"Absolutely certain," answered the major. "The Armstrong cannon only
uses 75 lbs. of powder for a projectile of 800 lbs., and the Rodman
Columbiad only expends 160 lbs. of powder to send its half-ton bullet
six miles. These facts cannot be doubted, for I found them myself in the
reports of the Committee of Artillery."

"That is certain," answered the general.

"Well," resumed the major, "the conclusion to be drawn from these
figures is that the quantity of powder does not augment with the weight
of the shot; in fact, if a shot of 24 lbs. took 16 lbs. of powder, and,
in other terms, if in ordinary cannons a quantity of powder weighing
two-thirds of the weight of the projectile is used, this proportion is
not always necessary. Calculate, and you will see that for the shot of
half a ton weight, instead of 333 lbs. of powder, this quantity has been
reduced to 116 lbs. only.

"What are you driving at?" asked the president.

"The extreme of your theory, my dear major," said J.T. Maston, "would
bring you to having no powder at all, provided your shot were
sufficiently heavy."

"Friend Maston will have his joke even in the most serious things,"
replied the major; "but he need not be uneasy; I shall soon propose a
quantity of powder that will satisfy him. Only I wish to have it
understood that during the war, and for the largest guns, the weight of
the powder was reduced, after experience, to a tenth of the weight of
the shot."

"Nothing is more exact," said Morgan; "but, before deciding the quantity
of powder necessary to give the impulsion, I think it would be well to
agree upon its nature."

"We shall use a large-grained powder," answered the major; "its
deflagration is the most rapid."

"No doubt," replied Morgan; "but it is very brittle, and ends by
damaging the chamber of the gun."

"Certainly; but what would be bad for a gun destined for long service
would not be so for our Columbiad. We run no danger of explosion, and
the powder must immediately take fire to make its mechanical effect
complete."

"We might make several touchholes," said J.T. Maston, "so as to set fire
to it in several places at the same time."

"No doubt," answered Elphinstone, "but that would make the working of it
more difficult. I therefore come back to my large-grained powder that
removes these difficulties."

"So be it," answered the general.

"To load his Columbiad," resumed the major, "Rodman used a powder in
grains as large as chestnuts, made of willow charcoal, simply rarefied
in cast-iron pans. This powder was hard and shining, left no stain on
the hands, contained a great proportion of hydrogen and oxygen,
deflagrated instantaneously, and, though very brittle, did not much
damage the mouthpiece."

"Well, it seems to me," answered J.T. Maston, "that we have nothing to
hesitate about, and that our choice is made."

"Unless you prefer gold-powder," replied the major, laughing, which
provoked a threatening gesture from the steel hook of his susceptible
friend.

Until then Barbicane had kept himself aloof from the discussion; he
listened, and had evidently an idea. He contented himself with saying
simply--

"Now, my friends, what quantity of powder do you propose?"

The three members of the Gun Club looked at one another for the space of
a minute.

"Two hundred thousand pounds," said Morgan at last.

"Five hundred thousand," replied the major.

"Eight hundred thousand," exclaimed J.T. Maston.

This, time Elphinstone dared not tax his colleague with exaggeration. In
fact, the question was that of sending to the moon a projectile weighing
20,000 lbs., and of giving it an initial force of 2000 yards a second. A
moment of silence, therefore, followed the triple proposition made by
the three colleagues.

It was at last broken by President Barbicane.

"My brave comrades," said he in a quiet tone, "I start from this
principle, that the resistance of our cannon, in the given conditions,
is unlimited. I shall, therefore, surprise the Honourable J.T. Maston
when I tell him that he has been timid in his calculations, and I
propose to double his 800,000 lbs. of powder."

"Sixteen hundred thousand pounds!" shouted J.T. Maston, jumping out of
his chair.

"Quite as much as that."

"Then we shall have to come back to my cannon half a mile long."

"It is evident," said the major.

"Sixteen hundred thousand pounds of powder," resumed the Secretary of
Committee, "will occupy about a space of 22,000 cubic feet; now, as your
cannon will only hold about 54,000 cubic feet, it will be half full, and
the chamber will not be long enough to allow the explosion of the gas to
give sufficient impulsion to your projectile."

There was nothing to answer. J.T. Maston spoke the truth. They all
looked at Barbicane.

"However," resumed the president, "I hold to that quantity of powder.
Think! 1,600,000 pounds of powder will give 6,000,000,000 litres of
gas."

"Then how is it to be done?" asked the general.

"It is very simple. We must reduce this enormous quantity of powder,
keeping at the same time its mechanical power."

"Good! By what means?"

"I will tell you," answered Barbicane simply.

His interlocutors all looked at him.

"Nothing is easier, in fact," he resumed, "than to bring that mass of
powder to a volume four times less. You all know that curious cellular
matter which constitutes the elementary tissues of vegetables?"

"Ah!" said the major, "I understand you, Barbicane."

"This matter," said the president, "is obtained in perfect purity in
different things, especially in cotton, which is nothing but the skin of
the seeds of the cotton plant. Now cotton, combined with cold nitric
acid, is transformed into a substance eminently insoluble, eminently
combustible, eminently explosive. Some years ago, in 1832, a French
chemist, Braconnot, discovered this substance, which he called
xyloidine. In 1838, another Frenchman, Pelouze, studied its different
properties; and lastly, in 1846, Schonbein, professor of chemistry at
Basle, proposed it as gunpowder. This powder is nitric cotton."

"Or pyroxyle," answered Elphinstone.

"Or fulminating cotton," replied Morgan.

"Is there not an American name to put at the bottom of this discovery?"
exclaimed J.T. Maston, animated by a lively sentiment of patriotism.

"Not one, unfortunately," replied the major.

"Nevertheless, to satisfy Maston," resumed the president, "I may tell
him that one of our fellow-citizens may be annexed to the study of the
celluosity, for collodion, which is one of the principal agents in
photography, is simply pyroxyle dissolved in ether to which alcohol has
been added, and it was discovered by Maynard, then a medical student."

"Hurrah for Maynard and fulminating cotton!" cried the noisy secretary
of the Gun Club.

"I return to pyroxyle," resumed Barbicane. "You are acquainted with its
properties which make it so precious to us. It is prepared with the
greatest facility; cotton plunged in smoking nitric acid for fifteen
minutes, then washed in water, then dried, and that is all."

"Nothing is more simple, certainty," said Morgan.

"What is more, pyroxyle is not damaged by moisture, a precious quality
in our eyes, as it will take several days to load the cannon. Its
inflammability takes place at 170° instead of at 240° and its
deflagration is so immediate that it may be fired on ordinary gunpowder
before the latter has time to catch fire too."

"Perfect," answered the major.

"Only it will cost more."

"What does that matter?" said J.T. Maston.

"Lastly, it communicates to projectiles a speed four times greater than
that of gunpowder. I may even add that if 8/10ths of its weight of
nitrate of potash is added its expansive force is still greatly
augmented."

"Will that be necessary?" asked the major.

"I do not think so," answered Barbicane. "Thus instead of 1,600,000 lbs.
of powder, we shall only have 400,000 lbs. of fulminating cotton, and as
we can, without danger, compress 500 lbs. of cotton into 27 cubic feet,
that quantity will not take up more than 180 feet in the chamber of the
Columbiad. By these means the projectile will have more than 700 feet of
chamber to traverse under a force of 6,000,000,000 of litres of gas
before taking its flight over the Queen of Night."

Here J.T. Maston could not contain his emotion. He threw himself into
the arms of his friend with the violence of a projectile, and he would
have been stove in had he not have been bombproof.

This incident ended the first sitting of the committee. Barbicane and
his enterprising colleagues, to whom nothing seemed impossible, had just
solved the complex question of the projectile, cannon, and powder. Their
plan being made, there was nothing left but to put it into execution.




CHAPTER X.

ONE ENEMY AGAINST TWENTY-FIVE MILLIONS OF FRIENDS.


The American public took great interest in the least details of the Gun
Club's enterprise. It followed the committee debates day by day. The
most simple preparations for this great experiment, the questions of
figures it provoked, the mechanical difficulties to be solved, all
excited popular opinion to the highest pitch.

More than a year would elapse between the commencement of the work and
its completion; but the interval would not be void of excitement. The
place to be chosen for the boring, the casting the metal of the
Columbiad, its perilous loading, all this was more than necessary to
excite public curiosity. The projectile, once fired, would be out of
sight in a few seconds; then what would become of it, how it would
behave in space, how it would reach the moon, none but a few privileged
persons would see with their own eyes. Thus, then, the preparations for
the experiment and the precise details of its execution constituted the
real source of interest.

In the meantime the purely scientific attraction of the enterprise was
all at once heightened by an incident.

It is known what numerous legions of admirers and friends the Barbicane
project had called round its author. But, notwithstanding the number and
importance of the majority, it was not destined to be unanimous. One
man, one out of all the United States, protested against the Gun Club.
He attacked it violently on every occasion, and--for human nature is
thus constituted--Barbicane was more sensitive to this one man's
opposition than to the applause of all the others.

Nevertheless he well knew the motive of this antipathy, from whence came
this solitary enmity, why it was personal and of ancient date; lastly,
in what rivalry it had taken root.

The president of the Gun Club had never seen this persevering enemy.
Happily, for the meeting of the two men would certainly have had
disastrous consequences. This rival was a _savant_ like Barbicane, a
proud, enterprising, determined, and violent character, a pure Yankee.
His name was Captain Nicholl. He lived in Philadelphia.

No one is ignorant of the curious struggle which went on during the
Federal war between the projectile and ironclad vessels, the former
destined to pierce the latter, the latter determined not to be pierced.
Thence came a radical transformation in the navies of the two
continents. Cannon-balls and iron plates struggled for supremacy, the
former getting larger as the latter got thicker. Ships armed with
formidable guns went into the fire under shelter of their invulnerable
armour. The Merrimac, Monitor, ram Tennessee, and Wechhausen shot
enormous projectiles after having made themselves proof against the
projectiles of other ships. They did to others what they would not have
others do to them, an immoral principle upon which the whole art of war
is based.

Now Barbicane was a great caster of projectiles, and Nicholl was an
equally great forger of plate-armour. The one cast night and day at
Baltimore, the other forged day and night at Philadelphia. Each followed
an essentially different current of ideas.

As soon as Barbicane had invented a new projectile, Nicholl invented a
new plate armour. The president of the Gun Club passed his life in
piercing holes, the captain in preventing him doing it. Hence a constant
rivalry which even touched their persons. Nicholl appeared in
Barbicane's dreams as an impenetrable ironclad against which he split,
and Barbicane in Nicholl's dreams appeared like a projectile which
ripped him up.

Still, although they ran along two diverging lines, these _savants_
would have ended by meeting each other in spite of all the axioms in
geometry; but then it would have been on a duel field. Happily for these
worthy citizens, so useful to their country, a distance of from fifty to
sixty miles separated them, and their friends put such obstacles in the
way that they never met.

At present it was not clearly known which of the two inventors held the
palm. The results obtained rendered a just decision difficult. It
seemed, however, that in the end armour-plate would have to give way to
projectiles. Nevertheless, competent men had their doubts. At the latest
experiments the cylindro-conical shots of Barbicane had no more effect
than pins upon Nicholl's armour-plate. That day the forger of
Philadelphia believed himself victorious, and henceforth had nothing but
disdain for his rival. But when, later on, Barbicane substituted simple
howitzers of 600 lbs. for conical shots, the captain was obliged to go
down in his own estimation. It fact, these projectiles, though of
mediocre velocity, drilled with holes and broke to pieces armour-plate
of the best metal.

Things had reached this point and victory seemed to rest with the
projectile, when the war ended the very day that Nicholl terminated a
new forged armour-plate. It was a masterpiece of its kind. It defied all
the projectiles in the world. The captain had it taken to the Washington
Polygon and challenged the president of the Gun Club to pierce it.
Barbicane, peace having been made, would not attempt the experiment.

Then Nicholl, in a rage, offered to expose his armour-plate to the shock
of any kind of projectile, solid, hollow, round, or conical.

The president, who was determined not to compromise his last success,
refused.

Nicholl, excited by this unqualified obstinacy, tried to tempt Barbicane
by leaving him every advantage. He proposed to put his plate 200 yards
from the gun. Barbicane still refused. At 100 yards? Not even at 75.

"At 50, then," cried the captain, through the newspapers, "at 25 yards
from my plate, and I will be behind it."

Barbicane answered that even if Captain Nicholl would be in front of it
he would not fire any more.

On this reply, Nicholl could no longer contain himself. He had recourse
to personalities; he insinuated cowardice--that the man who refuses to
fire a shot from a cannon is very nearly being afraid of it; that, in
short, the artillerymen who fight now at six miles distance have
prudently substituted mathematical formulae for individual courage, and
that there is as much bravery required to quietly wait for a cannon-ball
behind armour-plate as to send it according to all the rules of science.

To these insinuations Barbicane answered nothing. Perhaps he never knew
about them, for the calculations of his great enterprise absorbed him
entirely.

When he made his famous communication to the Gun Club, the anger of
Captain Nicholl reached its maximum. Mixed with it was supreme jealousy
and a sentiment of absolute powerlessness. How could he invent anything
better than a Columbiad 900 feet long? What armour-plate could ever
resist a projectile of 30,000 lbs.? Nicholl was at first crushed by this
cannon-ball, then he recovered and resolved to crush the proposition by
the weight of his best arguments.

He therefore violently attacked the labours of the Gun Club. He sent a
number of letters to the newspapers, which they did not refuse to
publish. He tried to demolish Barbicane's work scientifically. Once the
war begun, he called reasons of every kind to his aid, reasons it must
be acknowledged often specious and of bad metal.

Firstly, Barbicane was violently attacked about his figures. Nicholl
tried to prove by A + B the falseness of his formulae, and he accused
him of being ignorant of the rudimentary principles of ballistics.
Amongst other errors, and according to Nicholl's own calculations, it
was impossible to give any body a velocity of 12,000 yards a second. He
sustained, algebra in hand, that even with that velocity a projectile
thus heavy would never pass the limits of the terrestrial atmosphere. It
would not even go eight leagues! Better still. Granted the velocity, and
taking it as sufficient, the shot would not resist the pressure of the
gas developed by the combustion of 1,600,000 pounds of powder, and even
if it did resist that pressure, it at least would not support such a
temperature; it would melt as it issued from the Columbiad, and would
fall in red-hot rain on the heads of the imprudent spectators.

Barbicane paid no attention to these attacks, and went on with his work.

Then Nicholl considered the question in its other aspects. Without
speaking of its uselessness from all other points of view, he looked
upon the experiment as exceedingly dangerous, both for the citizens who
authorised so condemnable a spectacle by their presence, and for the
towns near the deplorable cannon. He also remarked that if the
projectile did not reach its destination, a result absolutely
impossible, it was evident that it would fall on to the earth again, and
that the fall of such a mass multiplied by the square of its velocity
would singularly damage some point on the globe. Therefore, in such a
circumstance, and without any restriction being put upon the rights of
free citizens, it was one of those cases in which the intervention of
government became necessary, and the safety of all must not be
endangered for the good pleasure of a single individual.

It will be seen to what exaggeration Captain Nicholl allowed himself to
be carried. He was alone in his opinion. Nobody took any notice of his
Cassandra prophecies. They let him exclaim as much as he liked, till his
throat was sore if he pleased. He had constituted himself the defender
of a cause lost in advance. He was heard but not listened to, and he did
not carry off a single admirer from the president of the Gun Club, who
did not even take the trouble to refute his rival's arguments.

Nicholl, driven into his last intrenchments, and not being able to fight
for his opinion, resolved to pay for it. He therefore proposed in the
_Richmond Inquirer_ a series of bets conceived in these terms and in an
increasing proportion.

He bet that--

1. The funds necessary for the Gun Club's enterprise would not be
forthcoming, 1,000 dols.

2. That the casting of a cannon of 900 feet was impracticable and would
not succeed, 2,000 dols.

3. That it would be impossible to load the Columbiad, and that the
pyroxyle would ignite spontaneously under the weight of the projectile,
3,000 dols.

4. That the Columbiad would burst at the first discharge, 4,000 dols.

5. That the projectile would not even go six miles, and would fall a few
seconds after its discharge, 5,000 dols.

It will be seen that the captain was risking an important sum in his
invincible obstinacy. No less than 15,000 dols. were at stake.

Notwithstanding the importance of the wager, he received on the 19th of
October a sealed packet of superb laconism, couched in these terms:--

"Baltimore, October 18th.

"Done.

"BARBICANE."




CHAPTER XI.

FLORIDA AND TEXAS.


There still remained one question to be decided--a place favourable to
the experiment had to be chosen. According to the recommendation of the
Cambridge Observatory the gun must be aimed perpendicularly to the plane
of the horizon--that is to say, towards the zenith. Now the moon only
appears in the zenith in the places situated between 0° and 28° of
latitude, or, in other terms, when her declination is only 28°. The
question was, therefore, to determine the exact point of the globe where
the immense Columbiad should be cast.

On the 20th of October the Gun Club held a general meeting. Barbicane
brought a magnificent map of the United States by Z. Belltropp. But
before he had time to unfold it J.T. Maston rose with his habitual
vehemence, and began to speak as follows:--

"Honourable colleagues, the question we are to settle to-day is really
of national importance, and will furnish us with an occasion for doing a
great act of patriotism."

The members of the Gun Club looked at each other without understanding
what the orator was coming to.

"Not one of you," he continued, "would think of doing anything to
lessen the glory of his country, and if there is one right that the
Union may claim it is that of harbouring in its bosom the formidable
cannon of the Gun Club. Now, under the present circumstances--"

"Will you allow me--" said Barbicane.

"I demand the free discussion of ideas," replied the impetuous J.T.
Maston, "and I maintain that the territory from which our glorious
projectile will rise ought to belong to the Union."

"Certainly," answered several members.

"Well, then, as our frontiers do not stretch far enough, as on the south
the ocean is our limit, as we must seek beyond the United States and in
a neighbouring country this 28th parallel, this is all a legitimate
_casus belli_, and I demand that war should be declared against Mexico!"

"No, no!" was cried from all parts.

"No!" replied J.T. Maston. "I am much astonished at hearing such a word
in these precincts!"

"But listen--"

"Never! never!" cried the fiery orator. "Sooner or later this war will
be declared, and I demand that it should be this very day."

"Maston," said Barbicane, making his bell go off with a crash, "I agree
with you that the experiment cannot and ought not to be made anywhere
but on the soil of the Union, but if I had been allowed to speak before,
and you had glanced at this map, you would know that it is perfectly
useless to declare war against our neighbours, for certain frontiers of
the United States extend beyond the 28th parallel. Look, we have at our
disposition all the southern part of Texas and Florida."

This incident had no consequences; still it was not without regret that
J.T. Maston allowed himself to be convinced. It was, therefore, decided
that the Columbiad should be cast either on the soil of Texas or on that
of Florida. But this decision was destined to create an unexampled
rivalry between the towns of these two states.

The 28th parallel, when it touches the American coast, crosses the
peninsula of Florida, and divides it into two nearly equal portions.
Then, plunging into the Gulf of Mexico, it subtends the arc formed by
the coasts of Alabama, Mississippi, and Louisiana; then skirting Texas,
off which it cuts an angle, it continues its direction over Mexico,
crosses the Sonora and Old California, and loses itself in the Pacific
Ocean; therefore only the portions of Texas and Florida situated below
this parallel fulfilled the requisite conditions of latitude recommended
by the Observatory of Cambridge.

The southern portion of Florida contains no important cities. It only
bristles with forts raised against wandering Indians. One town only,
Tampa Town, could put in a claim in favour of its position.

In Texas, on the contrary, towns are more numerous and more important.
Corpus Christi in the county of Nuaces, and all the cities situated on
the Rio Bravo, Laredo, Comalites, San Ignacio in Web, Rio Grande city in
Starr, Edinburgh in Hidalgo, Santa-Rita, El Panda, and Brownsville in
Cameron, formed a powerful league against the pretensions of Florida.

The decision, therefore, was hardly made public before the Floridan and
Texican deputies flocked to Baltimore by the shortest way. From that
moment President Barbicane and the influential members of the Gun Club
were besieged day and night by formidable claims. If seven towns of
Greece contended for the honour of being Homer's birthplace, two entire
states threatened to fight over a cannon.

These rival parties were then seen marching with weapons about the
streets of the town. Every time they met a fight was imminent, which
would have had disastrous consequences. Happily the prudence and skill
of President Barbicane warded off this danger. Personal demonstrations
found an outlet in the newspapers of the different states. It was thus
that the _New York Herald_ and the _Tribune_ supported the claims of
Texas, whilst the _Times_ and the _American Review_ took the part of the
Floridan deputies. The members of the Gun Club did not know which to
listen to.

Texas came up proudly with its twenty-six counties, which it seemed to
put in array; but Florida answered that twelve counties proved more than
twenty-six in a country six times smaller.

Texas bragged of its 33,000 inhabitants; but Florida, much smaller,
boasted of being much more densely populated with 56,000. Besides,
Florida accused Texas of being the home of paludian fevers, which
carried off, one year with another, several thousands of inhabitants,
and Florida was not far wrong.

In its turn Texas replied that Florida need not envy its fevers, and
that it was, at least, imprudent to call other countries unhealthy when
Florida itself had chronic "vomito negro," and Texas was not far wrong.

"Besides," added the Texicans through the _New York Herald_, "there are
rights due to a state that grows the best cotton in all America, a state
which produces holm oak for building ships, a state that contains superb
coal and mines of iron that yield fifty per cent. of pure ore."

To that the _American Review_ answered that the soil of Florida, though
not so rich, offered better conditions for the casting of the Columbiad,
as it was composed of sand and clay-ground.

"But," answered the Texicans, "before anything can be cast in a place,
it must get to that place; now communication with Florida is difficult,
whilst the coast of Texas offers Galveston Bay, which is fourteen
leagues round, and could contain all the fleets in the world."

"Why," replied the newspapers devoted to Florida, "your Galveston Bay is
situated above the 29th parallel, whilst our bay of Espiritu-Santo opens
precisely at the 28th degree of latitude, and by it ships go direct to
Tampa Town."

"A nice bay truly!" answered Texas; "it is half-choked up with sand."

"Any one would think, to hear you talk," cried Florida, "that I was a
savage country."

"Well, the Seminoles do still wander over your prairies!"

"And what about your Apaches and your Comanches--are they civilised?"

The war had been thus kept up for some days when Florida tried to draw
her adversary upon another ground, and one morning the _Times_
insinuated that the enterprise being "essentially American," it ought
only to be attempted upon an "essentially American" territory.

At these words Texas could not contain itself.

"American!" it cried, "are we not as American as you? Were not Texas and
Florida both incorporated in the Union in 1845?"

"Certainly," answered the _Times_, "but we have belonged to America
since 1820."

"Yes," replied the _Tribune_, "after having been Spanish or English for
200 years, you were sold to the United States for 5,000,000 of dollars!"

"What does that matter?" answered Florida. "Need we blush for that? Was
not Louisiana bought in 1803 from Napoleon for 16,000,000 of dollars?"

"It is shameful!" then cried the Texican deputies. "A miserable slice of
land like Florida to dare to compare itself with Texas, which, instead
of being sold, made itself independent, which drove out the Mexicans on
the 2nd of March, 1836, which declared itself Federative Republican
after the victory gained by Samuel Houston on the banks of the San
Jacinto over the troops of Santa-Anna--a country, in short, which
voluntarily joined itself to the United States of America!"

"Because it was afraid of the Mexicans!" answered Florida.

"Afraid!" From the day this word, really too cutting, was pronounced,
the situation became intolerable. An engagement was expected between the
two parties in the streets of Baltimore. The deputies were obliged to be
watched.

President Barbicane was half driven wild. Notes, documents, and letters
full of threats inundated his house. Which course ought he to decide
upon? In the point of view of fitness of soil, facility of
communications, and rapidity of transport, the rights of the two states
were really equal. As to the political personalities, they had nothing
to do with the question.

Now this hesitation and embarrassment had already lasted some time when
Barbicane resolved to put an end to it; he called his colleagues
together, and the solution he proposed to them was a profoundly wise
one, as will be seen from the following:--

"After due consideration," said he, "of all that has just occurred
between Florida and Texas, it is evident that the same difficulties will
again crop up between the towns of the favoured state. The rivalry will
be changed from state to city, and that is all. Now Texas contains
eleven towns with the requisite conditions that will dispute the honour
of the enterprise, and that will create fresh troubles for us, whilst
Florida has but one; therefore I decide for Tampa Town!"

The Texican deputies were thunderstruck at this decision. It put them
into a terrible rage, and they sent nominal provocations to different
members of the Gun Club. There was only one course for the magistrates
of Baltimore to take, and they took it. They had the steam of a special
train got up, packed the Texicans into it, whether they would or no, and
sent them away from the town at a speed of thirty miles an hour.

But they were not carried off too quickly to hurl a last and threatening
sarcasm at their adversaries.

Making allusion to the width of Florida, a simple peninsula between two
seas, they pretended it would not resist the shock, and would be blown
up the first time the cannon was fired.

"Very well! let it be blown up!" answered the Floridans with a laconism
worthy of ancient times.




CHAPTER XII.

"URBI ET ORBI."


The astronomical, mechanical, and topographical difficulties once
removed, there remained the question of money. An enormous sum was
necessary for the execution of the project. No private individual, no
single state even, could have disposed of the necessary millions.

President Barbicane had resolved--although the enterprise was
American--to make it a business of universal interest, and to ask every
nation for its financial co-operation. It was the bounded right and duty
of all the earth to interfere in the business of the satellite. The
subscription opened at Baltimore, for this end extended thence to all
the world--_urbi et orbi_.

This subscription was destined to succeed beyond all hope; yet the money
was to be given, not lent. The operation was purely disinterested, in
the literal meaning of the word, and offered no chance of gain.

But the effect of Barbicane's communication had not stopped at the
frontiers of the United States; it had crossed the Atlantic and Pacific,
had invaded both Asia and Europe, both Africa and Oceania. The
observatories of the Union were immediately put into communication with
the observatories of foreign countries; some--those of Paris, St.
Petersburg, the Cape, Berlin, Altona, Stockholm, Warsaw, Hamburg, Buda,
Bologna, Malta, Lisbon, Benares, Madras, and Pekin--sent their
compliments to the Gun Club; the others prudently awaited the result.

As to the Greenwich Observatory, seconded by the twenty-two astronomical
establishments of Great Britain, it made short work of it; it boldly
denied the possibility of success, and took up Captain Nicholl's
theories. Whilst the different scientific societies promised to send
deputies to Tampa Town, the Greenwich staff met and contemptuously
dismissed the Barbicane proposition. This was pure English jealousy and
nothing else.

Generally speaking, the effect upon the world of science was excellent,
and from thence it passed to the masses, who, in general, were greatly
interested in the question, a fact of great importance, seeing those
masses were to be called upon to subscribe a considerable capital.

On the 8th of October President Barbicane issued a manifesto, full of
enthusiasm, in which he made appeal to "all persons on the face of the
earth willing to help." This document, translated into every language,
had great success.

Subscriptions were opened in the principal towns of the Union with a
central office at the Baltimore Bank, 9, Baltimore street; then
subscriptions were opened in the different countries of the two
continents:--At Vienna, by S.M. de Rothschild; St. Petersburg, Stieglitz
and Co.; Paris, Crédit Mobilier; Stockholm, Tottie and Arfuredson;
London, N.M. de Rothschild and Son; Turin, Ardouin and Co.; Berlin,
Mendelssohn; Geneva, Lombard, Odier, and Co.; Constantinople, Ottoman
Bank; Brussels, J. Lambert; Madrid, Daniel Weisweller; Amsterdam,
Netherlands Credit Co.; Rome, Torlonia and Co.; Lisbon, Lecesne;
Copenhagen, Private Bank; Buenos Ayres, Mana Bank; Rio Janeiro, Mana
Bank; Monte Video, Mana Bank; Valparaiso, Thomas La Chambre and Co.;
Lima, Thomas La Chambre and Co.; Mexico, Martin Daran and Co.

Three days after President Barbicane's manifesto 400,000 dollars were
received in the different towns of the Union. With such a sum in hand
the Gun Club could begin at once.

But a few days later telegrams informed America that foreign
subscriptions were pouring in rapidly. Certain countries were
distinguished by their generosity; others let go their money less
easily. It was a matter of temperament.

However, figures are more eloquent than words, and the following is an
official statement of the sums paid to the credit of the Gun Club when
the subscription was closed:--

The contingent of Russia was the enormous sum of 368,733 roubles. This
need astonish no one who remembers the scientific taste of the Russians
and the impetus which they have given to astronomical studies, thanks to
their numerous observatories, the principal of which cost 2,000,000
roubles.

France began by laughing at the pretensions of the Americans. The moon
served as an excuse for a thousand stale puns and a score of vaudevilles
in which bad taste contested the palm with ignorance. But, as the French
formerly paid after singing, they now paid after laughing, and
subscribed a sum of 1,258,930 francs. At that price they bought the
right to joke a little.

Austria, in the midst of her financial difficulties, was sufficiently
generous. Her part in the public subscription amounted to 216,000
florins, which were welcome.

Sweden and Norway contributed 52,000 rix-dollars. The figure was small
considering the country; but it would certainly have been higher if a
subscription had been opened at Christiania as well as at Stockholm. For
some reason or other the Norwegians do not like to send their money to
Norway.

Prussia, by sending 250,000 thalers, testified her approbation of the
enterprise. Her different observatories contributed an important sum,
and were amongst the most ardent in encouraging President Barbicane.

Turkey behaved generously, but she was personally interested in the
business; the moon, in fact, rules the course of her years and her
Ramadan fast. She could do no less than give 1,372,640 piastres, and she
gave them with an ardour that betrayed, however, a certain pressure from
the Government of the Porte.

Belgium distinguished herself amongst all the second order of States by
a gift of 513,000 francs, about one penny and a fraction for each
inhabitant.

Holland and her colonies contributed 110,000 florins, only demanding a
discount of five per cent., as she paid ready money.

Denmark, rather confined for room, gave, notwithstanding, 9,000 ducats,
proving her love for scientific experiments.

The Germanic Confederation subscribed 34,285 florins; more could not be
asked from her; besides, she would not have given more.

Although in embarrassed circumstances, Italy found 2,000,000 francs in
her children's pockets, but by turning them well inside out. If she had
then possessed Venetia she would have given more, but she did not yet
possess Venetia.

The Pontifical States thought they could not send less than 7,040 Roman
crowns, and Portugal pushed her devotion to the extent of 3,000
cruzades.

Mexico gent the widow's mite, 86 piastres; but empires in course of
formation are always in rather embarrassed circumstances.

Switzerland sent the modest sum of 257 francs to the American scheme. It
must be frankly stated that Switzerland only looked upon the practical
side of the operation; the action of sending a bullet to the moon did
not seem of a nature sufficient for the establishing of any
communication with the Queen of Night, so Switzerland thought it
imprudent to engage capital in an enterprise depending upon such
uncertain events. After all, Switzerland was, perhaps, right.

As to Spain, she found it impossible to get together more than 110
reals. She gave as an excuse that she had her railways to finish. The
truth is that science is not looked upon very favourably in that
country; it is still a little behindhand. And then certain Spaniards,
and not the most ignorant either, had no clear conception of the size of
the projectile compared with that of the moon; they feared it might
disturb the satellite from her orbit, and make her fall on to the
surface of the terrestrial globe. In that case it was better to have
nothing to do with it, which they carried out, with that small
exception.

England alone remained. The contemptuous antipathy with which she
received Barbicane's proposition is known. The English have but a single
mind in their 25,000,000 of bodies which Great Britain contains. They
gave it to be understood that the enterprise of the Gun Club was
contrary "to the principle of non-intervention," and they did not
subscribe a single farthing.

At this news the Gun Club contented itself with shrugging its shoulders,
and returned to its great work. When South America--that is to say,
Peru, Chili, Brazil, the provinces of La Plata and Columbia--had poured
into their hands their quota of 300,000 dollars, it found itself
possessed of a considerable capital of which the following is a
statement:--

United States subscription, 4,000,000 dollars; foreign subscriptions,
1,446,675 dollars; total, 5,446,675 dollars.

This was the large sum poured by the public into the coffers of the Gun
Club.

No one need be surprised at its importance. The work of casting, boring,
masonry, transport of workmen, and their installation in an almost
uninhabited country, the construction of furnaces and workshops, the
manufacturing tools, powder, projectile and incidental expenses would,
according to the estimates, absorb nearly the whole. Some of the
cannon-shots fired during the war cost 1,000 dollars each; that of
President Barbicane, unique in the annals of artillery, might well cost
5,000 times more.

On the 20th of October a contract was made with the Goldspring
Manufactory, New York, which during the war had furnished Parrott with
his best cast-iron guns.

It was stipulated between the contracting parties that the Goldspring
Manufactory should pledge itself to send to Tampa Town, in South
Florida, the necessary materials for the casting of the Columbiad.

This operation was to be terminated, at the latest, on the 15th of the
next October, and the cannon delivered in good condition, under penalty
of 100 dollars a day forfeit until the moon should again present herself
under the same conditions--that is to say, during eighteen years and
eleven days.

The engagement of the workmen, their pay, and the necessary transports
all to be made by the Goldspring Company.

This contract, made in duplicate, was signed by I. Barbicane, president
of the Gun Club, and J. Murphison, Manager of the Goldspring
Manufactory, who thus signed on the part of the contracting parties.




CHAPTER XIII.

STONY HILL.


Since the choice made by the members of the Gun Club to the detriment of
Texas, every one in America--where every one knows how to read--made it
his business to study the geography of Florida. Never before had the
booksellers sold so many _Bertram's Travels in Florida_, _Roman's
Natural History of East and West Florida_, _Williams' Territory of
Florida_, and _Cleland on the Culture of the Sugar Cane in East
Florida_. New editions of these works were required. There was quite a
rage for them.

Barbicane had something better to do than to read; he wished to see with
his own eyes and choose the site of the Columbiad. Therefore, without
losing a moment, he put the funds necessary for the construction of a
telescope at the disposition of the Cambridge Observatory, and made a
contract with the firm of Breadwill and Co., of Albany, for the making
of the aluminium projectile; then he left Baltimore accompanied by J.T.
Maston, Major Elphinstone, and the manager of the Goldspring
Manufactory.

The next day the four travelling companions reached New Orleans. There
they embarked on board the _Tampico_, a despatch-boat belonging to the
Federal Navy, which the Government had placed at their disposal, and,
with all steam on, they quickly lost sight of the shores of Louisiana.

The passage was not a long one; two days after its departure the
_Tampico_, having made four hundred and eighty miles, sighted the
Floridian coast. As it approached, Barbicane saw a low, flat coast,
looking rather unfertile. After coasting a series of creeks rich in
oysters and lobsters, the _Tampico_ entered the Bay of Espiritu-Santo.

This bay is divided into two long roadsteads, those of Tampa and
Hillisboro, the narrow entrance to which the steamer soon cleared. A
short time afterwards the batteries of Fort Brooke rose above the waves
and the town of Tampa appeared, carelessly lying on a little natural
harbour formed by the mouth of the river Hillisboro.

There the _Tampico_ anchored on October 22nd, at seven p.m.; the four
passengers landed immediately.

Barbicane felt his heart beat violently as he set foot on Floridian
soil; he seemed to feel it with his feet like an architect trying the
solidity of a house. J.T. Maston scratched the ground with his steel
hook.

"Gentlemen," then said Barbicane, "we have no time to lose, and we will
set off on horseback to-morrow to survey the country."

The minute Barbicane landed the three thousand inhabitants of Tampa Town
went out to meet him, an honour quite due to the president of the Gun
Club, who had decided in their favour. They received him with formidable
exclamations, but Barbicane escaped an ovation by shutting himself up in
his room at the Franklin Hotel and refusing to see any one.

The next day, October 23rd, small horses of Spanish race, full of fire
and vigour, pawed the ground under his windows. But, instead of four,
there were fifty, with their riders. Barbicane went down accompanied by
his three companions, who were at first astonished to find themselves in
the midst of such a cavalcade. He remarked besides that each horseman
carried a carbine slung across his shoulders and pistols in his
holsters. The reason for such a display of force was immediately given
him by a young Floridian, who said to him--

"Sir, the Seminoles are there."

"What Seminoles?"

"Savages who frequent the prairies, and we deemed it prudent to give you
an escort."

"Pooh!" exclaimed J.T. Maston as he mounted his steed.

"It is well to be on the safe side," answered the Floridian.

"Gentlemen," replied Barbicane, "I thank you for your attention, and now
let us be off."

The little troop set out immediately, and disappeared in a cloud of
dust. It was five a.m.; the sun shone brilliantly already, and the
thermometer indicated 84°, but fresh sea breezes moderated this
excessive heat.

Barbicane, on leaving Tampa Town, went down south and followed the coast
to Alifia Creek. This small river falls into Hillisboro Bay, twelve
miles below Tampa Town. Barbicane and his escort followed its right bank
going up towards the east. The waves of the bay disappeared behind an
inequality in the ground, and the Floridian country was alone in sight.

Florida is divided into two parts; the one to the north, more populous
and less abandoned, has Tallahassee for capital, and Pensacola, one of
the principal marine arsenals of the United States; the other, lying
between the Atlantic and the Gulf of Mexico, is only a narrow peninsula,
eaten away by the current of the Gulf Stream--a little tongue of land
lost amidst a small archipelago, which the numerous vessels of the
Bahama Channel double continually. It is the advanced sentinel of the
gulf of great tempests. The superficial area of this state measures
38,033,267 acres, amongst which one had to be chosen situated beyond the
28th parallel and suitable for the enterprise. As Barbicane rode along
he attentively examined the configuration of the ground and its
particular distribution.

Florida, discovered by Juan Ponce de Leon in 1512, on Palm Sunday, was
first of all named _Pascha Florida_. It was well worthy of that
designation with its dry and arid coasts. But a few miles from the shore
the nature of the ground gradually changed, and the country showed
itself worthy of its name; the soil was cut up by a network of creeks,
rivers, watercourses, ponds, and small lakes; it might have been
mistaken for Holland or Guiana; but the ground gradually rose and soon
showed its cultivated plains, where all the vegetables of the North and
South grow in perfection, its immense fields, where a tropical sun and
the water conserved in its clayey texture do all the work of
cultivating, and lastly its prairies of pineapples, yams, tobacco, rice,
cotton, and sugarcanes, which extended as far as the eye could reach,
spreading out their riches with careless prodigality.

Barbicane appeared greatly satisfied on finding the progressive
elevation of the ground, and when J.T. Maston questioned him on the
subject,

"My worthy friend," said he, "it is greatly to our interest to cast our
Columbiad on elevated ground."

"In order to be nearer the moon?" exclaimed the secretary of the Gun
Club.

"No," answered Barbicane, smiling. "What can a few yards more or less
matter? No, but on elevated ground our work can be accomplished more
easily; we shall not have to struggle against water, which will save us
long and expensive tubings, and that has to be taken into consideration
when a well 900 feet deep has to be sunk."

"You are right," said Murchison, the engineer; "we must, as much as
possible, avoid watercourses during the casting; but if we meet with
springs they will not matter much; we can exhaust them with our machines
or divert them from their course. Here we have not to work at an
artesian well, narrow and dark, where all the boring implements have to
work in the dark. No; we can work under the open sky, with spade and
pickaxe, and, by the help of blasting, our work will not take long."

"Still," resumed Barbicane, "if by the elevation of the ground or its
nature we can avoid a struggle with subterranean waters, we can do our
work more rapidly and perfectly; we must, therefore, make our cutting in
ground situated some thousands of feet above the level of the sea."

"You are right, Mr. Barbicane, and, if I am not mistaken, we shall soon
find a suitable spot."

"I should like to see the first spadeful turned up," said the president.

"And I the last!" exclaimed J.T. Maston.

"We shall manage it, gentlemen," answered the engineer; "and, believe
me, the Goldspring Company will not have to pay you any forfeit for
delay."

"Faith! it had better not," replied J.T. Maston; "a hundred dollars a
day till the moon presents herself in the same conditions--that is to
say, for eighteen years and eleven days--do you know that would make
658,000 dollars?"

"No, sir, we do not know, and we shall not need to learn."

About ten a.m. the little troop had journeyed about twelve miles; to the
fertile country succeeded a forest region. There were the most varied
perfumes in tropical profusion. The almost impenetrable forests were
made up of pomegranates, orange, citron, fig, olive, and apricot trees,
bananas, huge vines, the blossoms and fruit of which rivalled each other
in colour and perfume. Under the perfumed shade of these magnificent
trees sang and fluttered a world of brilliantly-coloured birds, amongst
which the crab-eater deserved a jewel casket, worthy of its feathered
gems, for a nest.

J.T. Maston and the major could not pass through such opulent nature
without admiring its splendid beauty.

But President Barbicane, who thought little of these marvels, was in a
hurry to hasten onwards; this country, so fertile, displeased him by its
very fertility; without being otherwise hydropical, he felt water under
his feet, and sought in vain the signs of incontestable aridity.

In the meantime they journeyed on. They were obliged to ford several
rivers, and not without danger, for they were infested with alligators
from fifteen to eighteen feet long. J.T. Maston threatened them boldly
with his formidable hook, but he only succeeded in frightening the
pelicans, phaetons, and teals that frequented the banks, while the red
flamingoes looked on with a stupid stare.

At last these inhabitants of humid countries disappeared in their turn.
The trees became smaller and more thinly scattered in smaller woods;
some isolated groups stood amidst immense plains where ranged herds of
startled deer.

"At last!" exclaimed Barbicane, rising in his stirrups. "Here is the
region of pines."

"And savages," answered the major.

In fact, a few Seminoles appeared on the horizon. They moved about
backwards and forwards on their fleet horses, brandishing long lances or
firing their guns with a dull report. However, they confined themselves
to these hostile demonstrations, which had no effect on Barbicane and
his companions.

They were then in the middle of a rocky plain, a vast open space of
several acres in extent which the sun covered with burning rays. It was
formed by a wide elevation of the soil, and seemed to offer to the
members of the Gun Club all the required conditions for the construction
of their Columbiad.

"Halt!" cried Barbicane, stopping. "Has this place any name?"

"It is called Stony Hill," answered the Floridians.

Barbicane, without saying a word, dismounted, took his instruments, and
began to fix his position with extreme precision. The little troop drawn
up around him watched him in profound silence.

At that moment the sun passed the meridian. Barbicane, after an
interval, rapidly noted the result of his observation, and said--

"This place is situated 1,800 feet above the sea level in lat. 27° 7'
and West long. 5° 7' by the Washington meridian. It appears to me by its
barren and rocky nature to offer every condition favourable to our
enterprise; we will therefore raise our magazines, workshops, furnaces,
and workmen's huts here, and it is from this very spot," said he,
stamping upon it with his foot, "the summit of Stony Hill, that our
projectile will start for the regions of the solar world!"




CHAPTER XIV.

PICKAXE AND TROWEL.


That same evening Barbicane and his companions returned to Tampa Town,
and Murchison, the engineer, re-embarked on board the _Tampico_ for New
Orleans. He was to engage an army of workmen to bring back the greater
part of the working-stock. The members of the Gun Club remained at Tampa
Town in order to set on foot the preliminary work with the assistance of
the inhabitants of the country.

Eight days after its departure the _Tampico_ returned to the
Espiritu-Santo Bay with a fleet of steamboats. Murchison had succeeded
in getting together 1,500 workmen. In the evil days of slavery he would
have lost his time and trouble; but since America, the land of liberty,
has only contained freemen, they flock wherever they can get good pay.
Now money was not wanting to the Gun Club; it offered a high rate of
wages with considerable and proportionate perquisites. The workman
enlisted for Florida could, once the work finished, depend upon a
capital placed in his name in the bank of Baltimore.

Murchison had therefore only to pick and choose, and could be severe
about the intelligence and skill of his workmen. He enrolled in his
working legion the pick of mechanics, stokers, iron-founders,
lime-burners, miners, brickmakers, and artisans of every sort, white or
black without distinction of colour. Many of them brought their families
with them. It was quite an emigration.

On the 31st of October, at 10 a.m., this troop landed on the quays of
Tampa Town. The movement and activity which reigned in the little town
that had thus doubled its population in a single day may be imagined. In
fact, Tampa Town was enormously benefited by this enterprise of the Gun
Club, not by the number of workmen who were immediately drafted to Stony
Hill, but by the influx of curious idlers who converged by degrees from
all points of the globe towards the Floridian peninsula.

During the first few days they were occupied in unloading the flotilla
of the tools, machines, provisions, and a large number of plate iron
houses made in pieces separately pieced and numbered. At the same time
Barbicane laid the first sleepers of a railway fifteen miles long that
was destined to unite Stony Hill and Tampa Town.

It is known how American railways are constructed, with capricious
bends, bold slopes, steep hills, and deep valleys. They do not cost much
and are not much in their way, only their trains run off or jump off as
they please. The railway from Tampa Town to Stony Hill was but a trifle,
and wanted neither much time nor much money for its construction.

Barbicane was the soul of this army of workmen who had come at his call.
He animated them, communicated to them his ardour, enthusiasm, and
conviction. He was everywhere at once, as if endowed with the gift of
ubiquity, and always followed by J.T. Maston, his bluebottle fly. His
practical mind invented a thousand things. With him there were no
obstacles, difficulties, or embarrassment. He was as good a miner,
mason, and mechanic as he was an artilleryman, having an answer to every
question, and a solution to every problem. He corresponded actively with
the Gun Club and the Goldspring Manufactory, and day and night the
_Tampico_ kept her steam up awaiting his orders in Hillisboro harbour.

Barbicane, on the 1st of November, left Tampa Town with a detachment of
workmen, and the very next day a small town of workmen's houses rose
round Stony Hill. They surrounded it with palisades, and from its
movement and ardour it might soon have been taken for one of the great
cities of the Union. Life was regulated at once and work began in
perfect order.

Careful boring had established the nature of the ground, and digging was
begun on November 4th. That day Barbicane called his foremen together
and said to them--

"You all know, my friends, why I have called you together in this part
of Florida. We want to cast a cannon nine feet in diameter, six feet
thick, and with a stone revetment nineteen and a half feet thick; we
therefore want a well 60 feet wide and 900 feet deep. This large work
must be terminated in nine months. You have, therefore, 2,543,400 cubic
feet of soil to dig out in 255 days--that is to say, 10,000 cubic feet a
day. That would offer no difficulty if you had plenty of elbow-room, but
as you will only have a limited space it will be more trouble.
Nevertheless as the work must be done it will be done, and I depend upon
your courage as much as upon your skill."

At 8 a.m. the first spadeful was dug out of the Floridian soil, and from
that moment this useful tool did not stop idle a moment in the hands of
the miner. The gangs relieved each other every three hours.

Besides, although the work was colossal it did not exceed the limit of
human capability. Far from that. How many works of much greater
difficulty, and in which the elements had to be more directly contended
against, had been brought to a successful termination! Suffice it to
mention the well of Father Joseph, made near Cairo by the Sultan Saladin
at an epoch when machines had not yet appeared to increase the strength
of man a hundredfold, and which goes down to the level of the Nile
itself at a depth of 300 feet! And that other well dug at Coblentz by
the Margrave Jean of Baden, 600 feet deep! All that was needed was a
triple depth and a double width, which made the boring easier. There was
not one foreman or workman who doubted about the success of the
operation.

An important decision taken by Murchison and approved of by Barbicane
accelerated the work. An article in the contract decided that the
Columbiad should be hooped with wrought-iron--a useless precaution, for
the cannon could evidently do without hoops. This clause was therefore
given up. Hence a great economy of time, for they could then employ the
new system of boring now used for digging wells, by which the masonry is
done at the same time as the boring. Thanks to this very simple
operation they were not obliged to prop up the ground; the wall kept it
up and went down by its own weight.

This manoeuvre was only to begin when the spade should have reached the
solid part of the ground.

On the 4th of November fifty workmen began to dig in the very centre of
the inclosure surrounded by palisades--that is to say, the top of Stony
Hill--a circular hole sixty feet wide.

The spade first turned up a sort of black soil six inches deep, which it
soon carried away. To this soil succeeded two feet of fine sand, which
was carefully taken out, as it was to be used for the casting.

After this sand white clay appeared, similar to English chalk, and which
was four feet thick.

Then the pickaxes rang upon the hard layer, a species of rock formed by
very dry petrified shells. At that point the hole was six and a half
feet deep, and the masonry was begun.

At the bottom of that excavation they made an oak wheel, a sort of
circle strongly bolted and of enormous strength; in its centre a hole
was pierced the size of the exterior diameter of the Columbiad. It was
upon this wheel that the foundations of the masonry were placed, the
hydraulic cement of which joined the stones solidly together. After the
workmen had bricked up the space from the circumference to the centre,
they found themselves inclosed in a well twenty-one feet wide.

When this work was ended the miners began again with spade and pickaxe,
and set upon the rock under the wheel itself, taking care to support it
on extremely strong tressels; every time the hole was two feet deeper
they took away the tressels; the wheel gradually sank, taking with it
its circle of masonry, at the upper layer of which the masons worked
incessantly, taking care to make vent-holes for the escape of gas during
the operation of casting.

This kind of work required great skill and constant attention on the
part of the workmen; more than one digging under the wheel was
dangerous, and some were even mortally wounded by the splinters of
stone; but their energy did not slacken for a moment by day nor night;
by day, when the sun's rays sent the thermometer up to 99° on the
calcined planes; by night, under the white waves of electric light, the
noise of the pickaxe on the rock, the blasting and the machines,
together with the wreaths of smoke scattered through the air, traced a
circle of terror round Stony Hill, which the herds of buffaloes and the
detachments of Seminoles never dared to pass.

In the meantime the work regularly advanced; steam-cranes speeded the
carrying away of the rubbish; of unexpected obstacles there were none;
all the difficulties had been foreseen and guarded against.

When the first month had gone by the well had attained the depth
assigned for the time--i.e., 112 feet. In December this depth was
doubled, and tripled in January. During February the workmen had to
contend against a sheet of water which sprang from the ground. They were
obliged to employ powerful pumps and apparatus of compressed air to
drain it off, so as to close up the orifice from which it issued, just
as leaks are caulked on board ship. At last they got the better of these
unwelcome springs, only in consequence of the loosening of the soil the
wheel partially gave way, and there was a landslip. The frightful force
of this bricked circle, more than 400 feet high, may be imagined! This
accident cost the life of several workmen. Three weeks had to be taken
up in propping the stone revetment and making the wheel solid again.
But, thanks to the skill of the engineer and the power of the machines,
it was all set right, and the boring continued.

No fresh incident henceforth stopped the progress of the work, and on
the 10th of June, twenty days before the expiration of the delay fixed
by Barbicane, the well, quite bricked round, had reached the depth of
900 feet. At the bottom the masonry rested upon a massive block, thirty
feet thick, whilst at the top it was on a level with the soil.

President Barbicane and the members of the Gun Club warmly congratulated
the engineer Murchison; his cyclopean work had been accomplished with
extraordinary rapidity.

During these eight months Barbicane did not leave Stony Hill for a
minute; whilst he narrowly watched over the boring operations, he took
every precaution to insure the health and well-being of his workmen, and
he was fortunate enough to avoid the epidemics common to large
agglomerations of men, and so disastrous in those regions of the globe
exposed to tropical influence.

It is true that several workmen paid with their lives for the
carelessness engendered by these dangerous occupations; but such
deplorable misfortunes cannot be avoided, and these are details that
Americans pay very little attention to. They are more occupied with
humanity in general than with individuals in particular. However,
Barbicane professed the contrary principles, and applied them upon every
occasion. Thanks to his care, to his intelligence and respectful
intervention in difficult cases, to his prodigious and humane wisdom,
the average of catastrophes did not exceed that of cities on the other
side of the Atlantic, amongst others those of France, where they count
about one accident upon every 200,000 francs of work.




CHAPTER XV.

THE CEREMONY OF THE CASTING.


During the eight months that were employed in the operation of boring
the preparatory works of the casting had been conducted simultaneously
with extreme rapidity; a stranger arriving at Stony Hill would have been
much surprised at what he saw there.

Six hundred yards from the well, and standing in a circle round it as a
central point, were 1,200 furnaces, each six feet wide and three yards
apart. The line made by these 1,200 furnaces was two miles long. They
were all built on the same model, with high quadrangular chimneys, and
had a singular effect. J.T. Maston thought the architectural arrangement
superb. It reminded him of the monuments at Washington. He thought there
was nothing finer in the world, not even in Greece, where he
acknowledged never to have been.

It will be remembered that at their third meeting the committee decided
to use cast-iron for the Columbiad, and in particular the grey
description. This metal is, in fact, the most tenacious, ductile, and
malleable, suitable for all moulding operations, and when smelted with
pit coal it is of superior quality for engine-cylinders, hydraulic
presses, &c.

But cast-iron, if it has undergone a single fusion, is rarely
homogeneous enough; and it is by means of a second fusion that it is
purified, refined, and dispossessed of its last earthly deposits.

Before being forwarded to Tampa Town, the iron ore, smelted in the great
furnaces of Goldspring, and put in contact with coal and silicium heated
to a high temperature, was transformed into cast-iron. After this first
operation the metal was taken to Stony Hill. But there were 136 millions
of pounds of cast-iron, a bulk too expensive to be sent by railway; the
price of transport would have doubled that of the raw material. It
appeared preferable to freight vessels at New York and to load them with
the iron in bars; no less than sixty-eight vessels of 1,000 tons were
required, quite a fleet, which on May 3rd left New York, took the Ocean
route, coasted the American shores, entered the Bahama Channel, doubled
the point of Florida, and on the 10th of the same month entered the Bay
of Espiritu-Santo and anchored safely in the port of Tampa Town. There
the vessels were unloaded and their cargo carried by railway to Stony
Hill, and about the middle of January the enormous mass of metal was
delivered at its destination.

It will easily be understood that 1,200 furnaces were not too many to
melt these 60,000 tons of iron simultaneously. Each of these furnaces
contained about 1,400,000 lbs. of metal; they had been built on the
model of those used for the casting of the Rodman gun; they were
trapezoidal in form, with a high elliptical arch. The warming apparatus
and the chimney were placed at the two extremities of the furnace, so
that it was equally heated throughout. These furnaces, built of
fireproof brick, were filled with coal-grates and a "sole" for the bars
of iron; this sole, inclosed at an angle of 25°, allowed the metal to
flow into the receiving-troughs; from thence 1,200 converging trenches
carried it down to the central well.

The day following that upon which the works of masonry and casting were
terminated, Barbicane set to work upon the interior mould; his object
now was to raise in the centre of the well, with a coincident axis, a
cylinder 900 feet high and nine in diameter, to exactly fill up the
space reserved for the bore of the Columbiad. This cylinder was made of
a mixture of clay and sand, with the addition of hay and straw. The
space left between the mould and the masonry was to be filled with the
molten metal, which would thus make the sides of the cannon six feet
thick.

This cylinder, in order to have its equilibrium maintained, had to be
consolidated with iron bands and fixed at intervals by means of
cross-clamps fastened into the stone lining; after the casting these
clamps would be lost in the block of metal, which would not be the worse
for them.

This operation was completed on the 8th of July, and the casting was
fixed for the 10th.

"The casting will be a fine ceremony," said J.T. Maston to his friend
Barbicane.

"Undoubtedly," answered Barbicane, "but it will not be a public one!"

"What! you will not open the doors of the inclosure to all comers?"

"Certainly not; the casting of the Columbiad is a delicate, not to say a
dangerous, operation, and I prefer that it should be done with closed
doors. When the projectile is discharged you may have a public ceremony
if you like, but till then, no!"

The president was right; the operation might be attended with unforeseen
danger, which a large concourse of spectators would prevent being
averted. It was necessary to preserve complete freedom of movement. No
one was admitted into the inclosure except a delegation of members of
the Gun Club who made the voyage to Tampa Town. Among them was the brisk
Bilsby, Tom Hunter, Colonel Blomsberry, Major Elphinstone, General
Morgan, and _tutti quanti_, to whom the casting of the Columbiad was a
personal business. J.T. Maston constituted himself their cicerone; he
did not excuse them any detail; he led them about everywhere, through
the magazines, workshops, amongst the machines, and he forced them to
visit the 1,200 furnaces one after the other. At the end of the 1,200th
visit they were rather sick of it.

The casting was to take place precisely at twelve o'clock; the evening
before each furnace had been charged with 114,000 lbs. of metal in bars
disposed crossway to each other so that the warm air could circulate
freely amongst them. Since early morning the 1,200 chimneys had been
pouring forth volumes of flames into the atmosphere, and the soil was
shaken convulsively. There were as many pounds of coal to be burnt as
metal to be melted. There were, therefore, 68,000 tons of coal throwing
up before the sun a thick curtain of black smoke.

The heat soon became unbearable in the circle of furnaces, the rambling
of which resembled the rolling of thunder; powerful bellows added their
continuous blasts, and saturated the incandescent furnaces with oxygen.

The operation of casting in order to succeed must be done rapidly. At a
signal given by a cannon-shot each furnace was to pour out the liquid
iron and to be entirely emptied.

These arrangements made, foremen and workmen awaited the preconcerted
moment with impatience mixed with emotion. There was no longer any one
in the inclosure, and each superintendent took his place near the
aperture of the run.

Barbicane and his colleagues, installed on a neighbouring eminence,
assisted at the operation. Before them a cannon was planted ready to be
fired as a sign from the engineer.

A few minutes before twelve the first drops of metal began to run; the
reservoirs were gradually filled, and when the iron was all in a liquid
state it was left quiet for some instants in order to facilitate the
separation of foreign substances.

Twelve o'clock struck. The cannon was suddenly fired, and shot its flame
into the air. Twelve hundred tapping-holes were opened simultaneously,
and twelve hundred fiery serpents crept along twelve hundred troughs
towards the central well, rolling in rings of fire. There they plunged
with terrific noise down a depth of 900 feet. It was an exciting and
magnificent spectacle. The ground trembled, whilst these waves of iron,
throwing into the sky their clouds of smoke, evaporated at the same time
the humidity of the mould, and hurled it upwards through the vent-holes
of the masonry in the form of impenetrable vapour. These artificial
clouds unrolled their thick spirals as they went up to a height of 3,000
feet into the air. Any Red Indian wandering upon the limits of the
horizon might have believed in the formation of a new crater in the
heart of Florida, and yet it was neither an irruption, nor a typhoon,
nor a storm, nor a struggle of the elements, nor one of those terrible
phenomena which Nature is capable of producing. No; man alone had
produced those reddish vapours, those gigantic flames worthy of a
volcano, those tremendous vibrations like the shock of an earthquake,
those reverberations, rivals of hurricanes and storms, and it was his
hand which hurled into an abyss, dug by himself, a whole Niagara of
molten metal!




CHAPTER XVI.

THE COLUMBIAD.


Had the operation of casting succeeded? People were reduced to mere
conjecture. However, there was every reason to believe in its success,
as the mould had absorbed the entire mass of metal liquefied in the
furnaces. Still it was necessarily a long time impossible to be certain.

In fact, when Major Rodman cast his cannon of 160,000 lbs., it took no
less than a fortnight to cool. How long, therefore, would the monstrous
Columbiad, crowned with its clouds of vapour, and guarded by its intense
heat, be kept from the eyes of its admirers? It was difficult to
estimate.

The impatience of the members of the Gun Club was put to a rude test
during this lapse of time. But it could not be helped. J.T. Maston was
nearly roasted through his anxiety. A fortnight after the casting an
immense column of smoke was still soaring towards the sky, and the
ground burnt the soles of the feet within a radius of 200 feet round the
summit of Stony Hill.

The days went by; weeks followed them. There were no means of cooling
the immense cylinder. It was impossible to approach it. The members of
the Gun Club were obliged to wait with what patience they could muster.

"Here we are at the 10th of August," said J.T. Maston one morning. "It
wants hardly four months to the 1st of December! There still remains the
interior mould to be taken out, and the Columbiad to be loaded! We never
shall be ready! One cannot even approach the cannon! Will it never get
cool? That would be a cruel deception!"

They tried to calm the impatient secretary without succeeding. Barbicane
said nothing, but his silence covered serious irritation. To see himself
stopped by an obstacle that time alone could remove--time, an enemy to
be feared under the circumstances--and to be in the power of an enemy
was hard for men of war.

However, daily observations showed a certain change in the state of the
ground. Towards the 15th of August the vapour thrown off had notably
diminished in intensity and thickness. A few days after the earth only
exhaled a slight puff of smoke, the last breath of the monster shut up
in its stone tomb. By degrees the vibrations of the ground ceased, and
the circle of heat contracted; the most impatient of the spectators
approached; one day they gained ten feet, the next twenty, and on the
22nd of August Barbicane, his colleagues, and the engineer could take
their place on the cast-iron surface which covered the summit of Stony
Hill, certainly a very healthy spot, where it was not yet allowed to
have cold feet.

"At last!" cried the president of the Gun Club with an immense sigh of
satisfaction.

The works were resumed the same day. The extraction of the interior
mould was immediately proceeded with in order to clear out the bore;
pickaxes, spades, and boring-tools were set to work without
intermission; the clay and sand had become exceedingly hard under the
action of the heat; but by the help of machines they cleared away the
mixture still burning at its contact with the iron; the rubbish was
rapidly carted away on the railway, and the work was done with such
spirit, Barbicane's intervention was so urgent, and his arguments,
presented under the form of dollars, carried so much conviction, that on
the 3rd of September all trace of the mould had disappeared.

The operation of boring was immediately begun; the boring-machines were
set up without delay, and a few weeks later the interior surface of the
immense tube was perfectly cylindrical, and the bore had acquired a high
polish.

At last, on the 22nd of September, less than a year after the Barbicane
communication, the enormous weapon, raised by means of delicate
instruments, and quite vertical, was ready for use. There was nothing
but the moon to wait for, but they were sure she would not fail.

J.T. Maston's joy knew no bounds, and he nearly had a frightful fall
whilst looking down the tube of 900 feet. Without Colonel Blomsberry's
right arm, which he had happily preserved, the secretary of the Gun
Club, like a modern Erostatus, would have found a grave in the depths of
the Columbiad.

The cannon was then finished; there was no longer any possible doubt as
to its perfect execution; so on the 6th of October Captain Nicholl
cleared off his debt to President Barbicane, who inscribed in his
receipt-column a sum of 2,000 dollars. It may be believed that the
captain's anger reached its highest pitch, and cost him an illness.
Still there were yet three bets of 3,000, 4,000, and 5,000 dollars, and
if he only gained 2,000, his bargain would not be a bad one, though not
excellent. But money did not enter into his calculations, and the
success obtained by his rival in the casting of a cannon against which
iron plates sixty feet thick would not have resisted was a terrible blow
to him.

Since the 23rd of September the inclosure on Stony Hill had been quite
open to the public, and the concourse of visitors will be readily
imagined.

In fact, innumerable people from all points of the United States flocked
to Florida. The town of Tampa was prodigiously increased during that
year, consecrated entirely to the works of the Gun Club; it then
comprised a population of 150,000 souls. After having surrounded Fort
Brooke in a network of streets it was now being lengthened out on that
tongue of land which separated the two harbours of Espiritu-Santo Bay;
new quarters, new squares, and a whole forest of houses had grown up in
these formerly-deserted regions under the heat of the American sun.
Companies were formed for the erection of churches, schools, private
dwellings, and in less than a year the size of the town was increased
tenfold.

It is well known that Yankees are born business men; everywhere that
destiny takes them, from the glacial to the torrid zone, their instinct
for business is usefully exercised. That is why simple visitors to
Florida for the sole purpose of following the operations of the Gun Club
allowed themselves to be involved in commercial operations as soon as
they were installed in Tampa Town. The vessels freighted for the
transport of the metal and the workmen had given unparalleled activity
to the port. Soon other vessels of every form and tonnage, freighted
with provisions and merchandise, ploughed the bay and the two harbours;
vast offices of shipbrokers and merchants were established in the town,
and the _Shipping Gazette_ each day published fresh arrivals in the port
of Tampa.

Whilst roads were multiplied round the town, in consequence of the
prodigious increase in its population and commerce, it was joined by
railway to the Southern States of the Union. One line of rails connected
La Mobile to Pensacola, the great southern maritime arsenal; thence from
that important point it ran to Tallahassee. There already existed there
a short line, twenty-one miles long, to Saint Marks on the seashore. It
was this loop-line that was prolonged as far as Tampa Town, awakening in
its passage the dead or sleeping portions of Central Florida. Thus
Tampa, thanks to these marvels of industry due to the idea born one line
day in the brain of one man, could take as its right the airs of a large
town. They surnamed it "Moon-City," and the capital of Florida suffered
an eclipse visible from all points of the globe.

Every one will now understand why the rivalry was so great between Texas
and Florida, and the irritation of the Texicans when they saw their
pretensions set aside by the Gun Club. In their long-sighted sagacity
they had foreseen what a country might gain from the experiment
attempted by Barbicane, and the wealth that would accompany such a
cannon-shot. Texas lost a vast centre of commerce, railways, and a
considerable increase of population. All these advantages had been given
to that miserable Floridian peninsula, thrown like a pier between the
waves of the Gulf and those of the Atlantic Ocean. Barbicane, therefore,
divided with General Santa-Anna the Texan antipathy.

However, though given up to its commercial and industrial fury, the new
population of Tampa Town took care not to forget the interesting
operations of the Gun Club. On the contrary, the least details of the
enterprise, every blow of the pickaxe, interested them. There was an
incessant flow of people to and from Tampa Town to Stony Hill--a perfect
procession, or, better still, a pilgrimage.

It was already easy to foresee that the day of the experiment the
concourse of spectators would be counted by millions, for they came
already from all points of the earth to the narrow peninsula. Europe was
emigrating to America.

But until then, it must be acknowledged, the curiosity of the numerous
arrivals had only been moderately satisfied. Many counted upon seeing
the casting who only saw the smoke from it. This was not much for hungry
eyes, but Barbicane would allow no one to see that operation. Thereupon
ensued grumbling, discontent, and murmurs; they blamed the president for
what they considered dictatorial conduct. His act was stigmatised as
"un-American." There was nearly a riot round Stony Hill, but Barbicane
was not to be moved. When, however, the Columbiad was quite finished,
this state of closed doors could no longer be kept up; besides, it would
have been in bad taste, and even imprudent, to offend public opinion.
Barbicane, therefore, opened the inclosure to all comers; but, in
accordance with his practical character, he determined to coin money out
of the public curiosity.

It was, indeed, something to even be allowed to see this immense
Columbiad, but to descend into its depths seemed to the Americans the
_ne plus ultra_ of earthly felicity. In consequence there was not one
visitor who was not willing to give himself the pleasure of visiting the
interior of this metallic abyss. Baskets hung from steam-cranes allowed
them to satisfy their curiosity. It became a perfect mania. Women,
children, and old men all made it their business to penetrate the
mysteries of the colossal gun. The price for the descent was fixed at
five dollars a head, and, notwithstanding this high charge, during the
two months that preceded the experiment, the influx of visitors allowed
the Gun Club to pocket nearly 500,000 dollars!

It need hardly be said that the first visitors to the Columbiad were the
members of the Gun Club. This privilege was justly accorded to that
illustrious body. The ceremony of reception took place on the 25th of
September. A basket of honour took down the president, J.T. Maston,
Major Elphinstone, General Morgan, Colonel Blomsberry, and other members
of the Gun Club, ten in all. How hot they were at the bottom of that
long metal tube! They were nearly stifled, but how delightful--how
exquisite! A table had been laid for ten on the massive stone which
formed the bottom of the Columbiad, and was lighted by a jet of electric
light as bright as day itself. Numerous exquisite dishes, that seemed to
descend from heaven, were successively placed before the guests, and the
richest wines of France flowed profusely during this splendid repast,
given 900 feet below the surface of the earth!

The festival was a gay, not to say a noisy one. Toasts were given and
replied to. They drank to the earth and her satellite, to the Gun Club,
the Union, the Moon, Diana, Phoebe, Selene, "the peaceful courier of the
night." All the hurrahs, carried up by the sonorous waves of the immense
acoustic tube, reached its mouth with a noise of thunder; then the
multitude round Stony Hill heartily united their shouts to those of the
ten revellers hidden from sight in the depths of the gigantic Columbiad.

J.T. Maston could contain himself no longer. Whether he shouted or ate,
gesticulated or talked most would be difficult to determine. Any way he
would not have given up his place for an empire, "not even if the
cannon--loaded, primed, and fired at that very moment--were to blow him
in pieces into the planetary universe."




CHAPTER XVII.

A TELEGRAM.


The great work undertaken by the Gun Club was now virtually ended, and
yet two months would still elapse before the day the projectile would
start for the moon. These two months would seem as long as two years to
the universal impatience. Until then the smallest details of each
operation had appeared in the newspapers every day, and were eagerly
devoured by the public, but now it was to be feared that this "interest
dividend" would be much diminished, and every one was afraid of no
longer receiving his daily share of emotions.

They were all agreeably disappointed: the most unexpected,
extraordinary, incredible, and improbable incident happened in time to
keep up the general excitement to its highest pitch.

On September 30th, at 3.47 p.m., a telegram, transmitted through the
Atlantic Cable, arrived at Tampa Town for President Barbicane.

He tore open the envelope and read the message, and, notwithstanding his
great self-control, his lips grew pale and his eyes dim as he read the
telegram.

The following is the text of the message stored in the archives of the
Gun Club:--

"France, Paris,

"September 30th, 4 a.m.

"Barbicane, Tampa Town, Florida, United States.

"Substitute a cylindro-conical projectile for your spherical shell.
Shall go inside. Shall arrive by steamer _Atlanta_.

"MICHEL ARDAN."




CHAPTER XVIII.

THE PASSENGER OF THE ATLANTA.


If this wonderful news, instead of coming by telegraph, had simply
arrived by post and in a sealed envelope--if the French, Irish,
Newfoundland, and American telegraph clerks had not necessarily been
acquainted with it--Barbicane would not have hesitated for a moment. He
would have been quite silent about it for prudence' sake, and in order
not to throw discredit on his work. This telegram might be a practical
joke, especially as it came from a Frenchman. What probability could
there be that any man should conceive the idea of such a journey? And if
the man did exist was he not a madman who would have to be inclosed in a
strait-waistcoat instead of in a cannon-ball?

But the message was known, and Michel Ardan's proposition was already
all over the States of the Union, so Barbicane had no reason for
silence. He therefore called together his colleagues then in Tampa Town,
and, without showing what he thought about it or saying a word about the
degree of credibility the telegram deserved, he read coldly the laconic
text.

"Not possible!"--"Unheard of!"--"They are laughing at
us!"--"Ridiculous!"--"Absurd!" Every sort of expression for doubt,
incredulity, and folly was heard for some minutes with accompaniment of
appropriate gestures. J.T. Maston alone uttered the words:--

"That's an idea!" he exclaimed.

"Yes," answered the major, "but if people have such ideas as that they
ought not to think of putting them into execution."

"Why not?" quickly answered the secretary of the Gun Club, ready for an
argument. But the subject was let drop.

In the meantime Michel Ardan's name was already going about Tampa Town.
Strangers and natives talked and joked together, not about the
European--evidently a mythical personage--but about J.T. Maston, who had
the folly to believe in his existence. When Barbicane proposed to send a
projectile to the moon every one thought the enterprise natural and
practicable--a simple affair of ballistics. But that a reasonable being
should offer to go the journey inside the projectile was a farce, or, to
use a familiar Americanism, it was all "humbug."

This laughter lasted till evening throughout the Union, an unusual thing
in a country where any impossible enterprise finds adepts and partisans.

Still Michel Ardan's proposition did not fail to awaken a certain
emotion in many minds. "They had not thought of such a thing." How many
things denied one day had become realities the next! Why should not this
journey be accomplished one day or another? But, any way, the man who
would run such a risk must be a madman, and certainly, as his project
could not be taken seriously, he would have done better to be quiet
about it, instead of troubling a whole population with such ridiculous
trash.

But, first of all, did this personage really exist? That was the great
question. The name of "Michel Ardan" was not altogether unknown in
America. It belonged to a European much talked about for his audacious
enterprises. Then the telegram sent all across the depths of the
Atlantic, the designation of the ship upon which the Frenchman had
declared he had taken his passage, the date assigned for his
arrival--all these circumstances gave to the proposition a certain air
of probability. They were obliged to disburden their minds about it.
Soon these isolated individuals formed into groups, the groups became
condensed under the action of curiosity like atoms by virtue of
molecular attraction, and the result was a compact crowd going towards
President Barbicane's dwelling.

The president, since the arrival of the message, had not said what he
thought about it; he had let J.T. Maston express his opinions without
manifesting either approbation or blame. He kept quiet, proposing to
await events, but he had not taken public impatience into consideration,
and was not very pleased at the sight of the population of Tampa Town
assembled under his windows. Murmurs, cries, and vociferations soon
forced him to appear. It will be seen that he had all the disagreeables
as well as the duties of a public man.

He therefore appeared; silence was made, and a citizen asked him the
following question:--"Is the person designated in the telegram as Michel
Ardan on his way to America or not?"

"Gentlemen," answered Barbicane, "I know no more than you."

"We must get to know," exclaimed some impatient voices.

"Time will inform us," answered the president coldly.

"Time has no right to keep a whole country in suspense," answered the
orator. "Have you altered your plans for the projectile as the telegram
demanded?"

"Not yet, gentlemen; but you are right, we must have recourse to the
telegraph that has caused all this emotion."

"To the telegraph-office!" cried the crowd.

Barbicane descended into the street, and, heading the immense
assemblage, he went towards the telegraph-office.

A few minutes afterwards a telegram was on its way to the underwriters
at Liverpool, asking for an answer to the following questions:--

"What sort of vessel is the _Atlanta_? When did she leave Europe? Had
she a Frenchman named Michel Ardan on board?"

Two hours afterwards Barbicane received such precise information that
doubt was no longer possible.

"The steamer _Atlanta_, from Liverpool, set sail on October 2nd for
Tampa Town, having on board a Frenchman inscribed in the passengers'
book as Michel Ardan."

At this confirmation of the first telegram the eyes of the president
were lighted up with a sudden flame; he clenched his hands, and was
heard to mutter--

"It is true, then! It is possible, then! the Frenchman does exist! and
in a fortnight he will be here! But he is a madman! I never can
consent."

And yet the very same evening he wrote to the firm of Breadwill and Co.
begging them to suspend the casting of the projectile until fresh
orders.

Now how can the emotion be described which took possession of the whole
of America? The effect of the Barbicane proposition was surpassed
tenfold; what the newspapers of the Union said, the way they accepted
the news, and how they chanted the arrival of this hero from the old
continent; how to depict the feverish agitation in which every one
lived, counting the hours, minutes, and seconds; how to give even a
feeble idea of the effect of one idea upon so many heads; how to show
every occupation being given up for a single preoccupation, work
stopped, commerce suspended, vessels, ready to start, waiting in the
ports so as not to miss the arrival of the _Atlanta_, every species of
conveyance arriving full and returning empty, the bay of Espiritu-Santo
incessantly ploughed by steamers, packet-boats, pleasure-yachts, and
fly-boats of all dimensions; how to denominate in numbers the thousands
of curious people who in a fortnight increased the population of Tampa
Town fourfold, and were obliged to encamp under tents like an army in
campaign--all this is a task above human force, and could not be
undertaken without rashness.

At 9 a.m. on the 20th of October the semaphores of the Bahama Channel
signalled thick smoke on the horizon. Two hours later a large steamer
exchanged signals with them. The name _Atlanta_ was immediately sent to
Tampa Town. At 4 p.m. the English vessel entered the bay of
Espiritu-Santo. At 5 p.m. she passed the entrance to Hillisboro Harbour,
and at 6 p.m. weighed anchor in the port of Tampa Town.

The anchor had not reached its sandy bed before 500 vessels surrounded
the _Atlanta_ and the steamer was taken by assault. Barbicane was the
first on deck, and in a voice the emotion of which he tried in vain to
suppress--

"Michel Ardan!" he exclaimed.

"Present!" answered an individual mounted on the poop.

Barbicane, with his arms crossed, questioning eyes, and silent mouth,
looked fixedly at the passenger of the _Atlanta_.

He was a man forty-two years of age, tall, but already rather stooping,
like caryatides which support balconies on their shoulders. His large
head shook every now and then a shock of red hair like a lion's mane; a
short face, wide forehead, a moustache bristling like a cat's whiskers,
and little bunches of yellow hair on the middle of his cheeks, round and
rather wild-looking, short-sighted eyes completed this eminently feline
physiognomy. But the nose was boldly cut, the mouth particularly humane,
the forehead high, intelligent, and ploughed like a field that was never
allowed to remain fallow. Lastly, a muscular body well poised on long
limbs, muscular arms, powerful and well-set levers, and a decided gait
made a solidly built fellow of this European, "rather wrought than
cast," to borrow one of his expressions from metallurgic art.

The disciples of Lavater or Gratiolet would have easily deciphered in
the cranium and physiognomy of this personage indisputable signs of
combativity--that is to say, of courage in danger and tendency to
overcome obstacles, those of benevolence, and a belief in the
marvellous, an instinct that makes many natures dwell much on superhuman
things; but, on the other hand, the bumps of acquisivity, the need of
possessing and acquiring, were absolutely wanting.

To put the finishing touches to the physical type of the passenger of
the _Atlanta_, his garments wide, loose, and flowing, open cravat, wide
collar, and cuffs always unbuttoned, through which came nervous hands.
People felt that even in the midst of winter and dangers that man was
never cold.

On the deck of the steamer, amongst the crowd, he bustled about, never
still for a moment, "dragging his anchors," in nautical speech,
gesticulating, making friends with everybody, and biting his nails
nervously. He was one of those original beings whom the Creator invents
in a moment of fantasy, and of whom He immediately breaks the cast.

In fact, the character of Michel Ardan offered a large field for
physiological analysis. This astonishing man lived in a perpetual
disposition to hyperbole, and had not yet passed the age of
superlatives; objects depicted themselves on the retina of his eye with
exaggerated dimensions; from thence an association of gigantic ideas; he
saw everything on a large scale except difficulties and men.

He was besides of a luxuriant nature, an artist by instinct, and witty
fellow; he loved arguments _ad hominem_, and defended the weak side
tooth and nail.

Amongst other peculiarities he gave himself out as "sublimely ignorant,"
like Shakspeare, and professed supreme contempt for all _savants_,
"people," said he, "who only score our points." He was, in short, a
Bohemian of the country of brains, adventurous but not an adventurer, a
harebrained fellow, a Phaeton running away with the horses of the sun, a
kind of Icarus with relays of wings. He had a wonderful facility for
getting into scrapes, and an equally wonderful facility for getting out
of them again, falling on his feet like a cat.

In short, his motto was, "Whatever it may cost!" and the love of the
impossible his "ruling passion," according to Pope's fine expression.

But this enterprising fellow had the defects of his qualities. Who risks
nothing wins nothing, it is said. Ardan often risked much and got
nothing. He was perfectly disinterested and chivalric; he would not have
signed the death-warrant of his worst enemy, and would have sold himself
into slavery to redeem a negro.

In France and Europe everybody knew this brilliant, bustling person. Did
he not get talked of ceaselessly by the hundred voices of Fame, hoarse
in his service? Did he not live in a glass house, taking the entire
universe as confidant of his most intimate secrets? But he also
possessed an admirable collection of enemies amongst those he had cuffed
and wounded whilst using his elbows to make a passage in the crowd.

Still he was generally liked and treated like a spoiled child. Every one
was interested in his bold enterprises, and followed them with uneasy
mind. He was known to be so imprudent! When some friend wished to stop
him by predicting an approaching catastrophe, "The forest is only burnt
by its own trees," he answered with an amiable smile, not knowing that
he was quoting the prettiest of Arabian proverbs.

Such was the passenger of the _Atlanta_, always in a bustle, always
boiling under the action of inward fire, always moved, not by what he
had come to do in America--he did not even think about it--but on
account of his feverish organisation. If ever individuals offered a
striking contrast they were the Frenchman Michel Ardan and the Yankee
Barbicane, both, however, enterprising, bold, and audacious, each in his
own way.

Barbicane's contemplation of his rival was quickly interrupted by the
cheers of the crowd. These cries became even so frantic and the
enthusiasm took such a personal form that Michel Ardan, after having
shaken a thousand hands in which he nearly left his ten fingers, was
obliged to take refuge in his cabin.

Barbicane followed him without having uttered a word.

"You are Barbicane?" Michel Ardan asked him as soon as they were alone,
and in the same tone as he would have spoken to a friend of twenty
years' standing.

"Yes," answered the president of the Gun Club.

"Well, good morning, Barbicane. How are you? Very well? That's right!
that's right!"

"Then," said Barbicane, without further preliminary, "you have decided
to go?"

"Quite decided."

"Nothing will stop you?"

"Nothing. Have you altered your projectile as I told you in my message?"

"I waited till you came. But," asked Barbicane, insisting once more,
"you have quite reflected?"

"Reflected! have I any time to lose? I find the occasion to go for a
trip to the moon, I profit by it, and that is all. It seems to me that
does not want so much reflection."

Barbicane looked eagerly at the man who spoke of his project of journey
with so much carelessness, and with such absence of anxiety.

"But at least," he said, "you have some plan, some means of execution?"

"Excellent means. But allow me to tell you one thing. I like to say my
say once and for all, and to everybody, and to hear no more about it.
Then, unless you can think of something better, call together your
friends, your colleagues, all the town, all Florida, all America if you
like, and to-morrow I shall be ready to state my means of execution, and
answer any objections, whatever they may be. Will that do?"

"Yes, that will do," answered Barbicane.

Whereupon the president left the cabin, and told the crowd about Michel
Ardan's proposition. His words were received with great demonstrations
of joy. That cut short all difficulties. The next day every one could
contemplate the European hero at their ease. Still some of the most
obstinate spectators would not leave the deck of the _Atlanta_; they
passed the night on board. Amongst others, J.T. Maston had screwed his
steel hook into the combing of the poop, and it would have taken the
capstan to get it out again.

"He is a hero! a hero!" cried he in every tone, "and we are only old
women compared to that European!"

As to the president, after having requested the spectators to withdraw,
he re-entered the passenger's cabin, and did not leave it till the bell
of the steamer rang out the midnight quarter.

But then the two rivals in popularity shook each other warmly by the
hand, and separated friends.




CHAPTER XIX.

A MEETING.


The next day the sun did not rise early enough to satisfy public
impatience. Barbicane, fearing that indiscreet questions would be put to
Michel Ardan, would like to have reduced his auditors to a small number
of adepts, to his colleagues for instance. But it was as easy as to dam
up the Falls at Niagara. He was, therefore, obliged to renounce his
project, and let his friend run all the risks of a public lecture. The
new Town Hall of Tampa Town, notwithstanding its colossal dimensions,
was considered insufficient for the occasion, which had assumed the
proportions of a public meeting.

The place chosen was a vast plain, situated outside the town. In a few
hours they succeeded in sheltering it from the rays of the sun. The
ships of the port, rich in canvas, furnished the necessary accessories
for a colossal tent. Soon an immense sky of cloth was spread over the
calcined plain, and defended it against the heat of the day. There
300,000 persons stood and braved a stifling temperature for several
hours whilst awaiting the Frenchman's arrival. Of that crowd of
spectators one-third alone could see and hear; a second third saw badly,
and did not hear. As to the remaining third, it neither heard nor saw,
though it was not the least eager to applaud.

At three o'clock Michel Ardan made his appearance, accompanied by the
principal members of the Gun Club. He gave his right arm to President
Barbicane, and his left to J.T. Maston, more radiant than the midday
sun, and nearly as ruddy.

Ardan mounted the platform, from which his eyes extended over a forest
of black hats. He did not seem in the least embarrassed; he did not
pose; he was at home there, gay, familiar, and amiable. To the cheers
that greeted him he answered by a gracious bow; then with his hand asked
for silence, began to speak in English, and expressed himself very
correctly in these terms:--

"Gentlemen," said he, "although it is very warm, I intend to keep you a
few minutes to give you some explanation of the projects which have
appeared to interest you. I am neither an orator nor a _savant_, and I
did not count upon having to speak in public; but my friend Barbicane
tells me it would give you pleasure, so I do it. Then listen to me with
your 600,000 ears, and please to excuse the faults of the orator."

This unceremonious beginning was much admired by the audience, who
expressed their satisfaction by an immense murmur of applause.

"Gentlemen," said he, "no mark of approbation or dissent is prohibited.
That settled, I continue. And, first of all, do not forget that you have
to do with an ignorant man, but his ignorance goes far enough to ignore
difficulties. It has, therefore, appeared a simple, natural, and easy
thing to him to take his passage in a projectile and to start for the
moon. That journey would be made sooner or later, and as to the mode of
locomotion adopted, it simply follows the law of progress. Man began by
travelling on all fours, then one fine day he went on two feet, then in
a cart, then in a coach, then on a railway. Well, the projectile is the
carriage of the future, and, to speak the truth, planets are only
projectiles, simple cannon-balls hurled by the hand of the Creator. But
to return to our vehicle. Some of you, gentlemen, may think that the
speed it will travel at is excessive--nothing of the kind. All the
planets go faster, and the earth itself in its movement round the sun
carries us along three times as fast. Here are some examples. Only I ask
your permission to express myself in leagues, for American measures are
not very familiar to me, and I fear getting muddled in my calculations."

The demand appeared quite simple, and offered no difficulty. The orator
resumed his speech.

"The following, gentlemen, is the speed of the different planets. I am
obliged to acknowledge that, notwithstanding my ignorance, I know this
small astronomical detail exactly, but in two minutes you will be as
learned as I. Learn, then, that Neptune goes at the rate of 5,000
leagues an hour; Uranus, 7,000; Saturn, 8,858; Jupiter, 11,675; Mars,
22,011; the earth, 27,500; Venus, 32,190; Mercury, 52,520; some comets,
14,000 leagues in their perihelion! As to us, veritable idlers, people
in no hurry, our speed does not exceed 9,900 leagues, and it will go on
decreasing! I ask you if there is anything to wonder at, and if it is
not evident that it will be surpassed some day by still greater speeds,
of which light or electricity will probably be the mechanical agents?"

No one seemed to doubt this affirmation.

"Dear hearers," he resumed, "according to certain narrow minds--that is
the best qualification for them--humanity is inclosed in a Popilius
circle which it cannot break open, and is condemned to vegetate upon
this globe without ever flying towards the planetary shores! Nothing of
the kind! We are going to the moon, we shall go to the planets, we shall
go to the stars as we now go from Liverpool to New York, easily,
rapidly, surely, and the atmospheric ocean will be as soon crossed as
the oceans of the earth! Distance is only a relative term, and will end
by being reduced to zero."

The assembly, though greatly in favour of the French hero, was rather
staggered by this audacious theory. Michel Ardan appeared to see it.

"You do not seem convinced, my worthy hosts," he continued with an
amiable smile. "Well, let us reason a little. Do you know how long it
would take an express train to reach the moon? Three hundred days. Not
more. A journey of 86,410 leagues, but what is that? Not even nine times
round the earth, and there are very few sailors who have not done that
during their existence. Think, I shall be only ninety-eight hours on the
road! Ah, you imagine that the moon is a long way from the earth, and
that one must think twice before attempting the adventure! But what
would you say if I were going to Neptune, which gravitates at
1,147,000,000 leagues from the sun? That is a journey that very few
people could go, even if it only cost a farthing a mile! Even Baron
Rothschild would not have enough to take his ticket!"

This argument seemed greatly to please the assembly; besides, Michel
Ardan, full of his subject, grew superbly eloquent; he felt he was
listened to, and resumed with admirable assurance--

"Well, my friends, this distance from Neptune to the sun is nothing
compared to that of the stars, some of which are billions of leagues
from the sun! And yet people speak of the distance that separates the
planets from the sun! Do you know what I think of this universe that
begins with the sun and ends at Neptune? Should you like to know my
theory? It is a very simple one. According to my opinion, the solar
universe is one solid homogeneous mass; the planets that compose it are
close together, crowd one another, and the space between them is only
the space that separates the molecules of the most compact
metal--silver, iron, or platinum! I have, therefore, the right to
affirm, and I will repeat it with a conviction you will all
share--distance is a vain word; distance does not exist!"

"Well said! Bravo! Hurrah!" cried the assembly with one voice,
electrified by the gesture and accent of the orator, and the boldness of
his conceptions.

"No!" cried J.T. Maston, more energetically than the others; "distance
does not exist!"

And, carried away by the violence of his movements and emotions he could
hardly contain, he nearly fell from the top of the platform to the
ground. But he succeeded in recovering his equilibrium, and thus avoided
a fall that would have brutally proved distance not to be a vain word.
Then the speech of the distinguished orator resumed its course.

"My friends," said he, "I think that this question is now solved. If I
have not convinced you all it is because I have been timid in my
demonstrations, feeble in my arguments, and you must set it down to my
theoretic ignorance. However that may be, I repeat, the distance from
the earth to her satellite is really very unimportant and unworthy to
occupy a serious mind. I do not think I am advancing too much in saying
that soon a service of trains will be established by projectiles, in
which the journey from the earth to the moon will be comfortably
accomplished. There will be no shocks nor running off the lines to fear,
and the goal will be reached rapidly, without fatigue, in a straight
line, 'as the crow flies.' Before twenty years are over, half the earth
will have visited the moon!"

"Three cheers for Michel Ardan!" cried the assistants, even those least
convinced.

"Three cheers for Barbicane!" modestly answered the orator.

This act of gratitude towards the promoter of the enterprise was greeted
with unanimous applause.

"Now, my friends," resumed Michel Ardan, "if you have any questions to
ask me you will evidently embarrass me, but still I will endeavour to
answer you."

Until now the president of the Gun Club had reason to be very satisfied
with the discussion. It had rolled upon speculative theories, upon which
Michel Ardan, carried away by his lively imagination, had shown himself
very brilliant. He must, therefore, be prevented from deviating towards
practical questions, which he would doubtless not come out of so well.
Barbicane made haste to speak, and asked his new friend if he thought
that the moon or the planets were inhabited.

"That is a great problem, my worthy president," answered the orator,
smiling; "still, if I am not mistaken, men of great intelligence--Plutarch,
Swedenborg, Bernardin de Saint-Pierre, and many others--answered in the
affirmative. If I answered from a natural philosophy point of view I
should do the same--I should say to myself that nothing useless exists
in this world, and, answering your question by another, friend
Barbicane, I should affirm that if the planets are inhabitable, either
they are inhabited, they have been, or they will be."

"Very well," cried the first ranks of spectators, whose opinion had the
force of law for the others.

"It is impossible to answer with more logic and justice," said the
president of the Gun Club. "The question, therefore, comes to this: 'Are
the planets inhabitable?' I think so, for my part."

"And I--I am certain of it," answered Michel Ardan.

"Still," replied one of the assistants, "there are arguments against the
inhabitability of the worlds. In most of them it is evident that the
principles of life must be modified. Thus, only to speak of the planets,
the people must be burnt up in some and frozen in others according as
they are a long or short distance from the sun."

"I regret," answered Michel Ardan, "not to know my honourable opponent
personally. His objection has its value, but I think it may be combated
with some success, like all those of which the habitability of worlds
has been the object. If I were a physician I should say that if there
were less caloric put in motion in the planets nearest to the sun, and
more, on the contrary, in the distant planets, this simple phenomenon
would suffice to equalise the heat and render the temperature of these
worlds bearable to beings organised like we are. If I were a naturalist
I should tell him, after many illustrious _savants_, that Nature
furnishes us on earth with examples of animals living in very different
conditions of habitability; that fish breathe in a medium mortal to the
other animals; that amphibians have a double existence difficult to
explain; that certain inhabitants of the sea live in the greatest
depths, and support there, without being crushed, pressures of fifty or
sixty atmospheres; that some aquatic insects, insensible to the
temperature, are met with at the same time in springs of boiling water
and in the frozen plains of the Polar Ocean--in short, there are in
nature many means of action, often incomprehensible, but no less real.
If I were a chemist I should say that aërolites--bodies evidently formed
away from our terrestrial globe--have when analysed, revealed
indisputable traces of carbon, a substance that owes its origin solely
to organised beings, and which, according to Reichenbach's experiments,
must necessarily have been 'animalised.' Lastly, if I were a theologian
I should say that Divine Redemption, according to St. Paul, seems
applicable not only to the earth but to all the celestial bodies. But I
am neither a theologian, chemist, naturalist, nor natural philosopher.
So, in my perfect ignorance of the great laws that rule the universe, I
can only answer, 'I do not know if the heavenly bodies are inhabited,
and, as I do not know, I am going to see!'"

Did the adversary of Michel Ardan's theories hazard any further
arguments? It is impossible to say, for the frantic cries of the crowd
would have prevented any opinion from being promulgated. When silence
was again restored, even in the most distant groups, the triumphant
orator contented himself with adding the following considerations:--

"You will think, gentlemen, that I have hardly touched upon this grave
question. I am not here to give you an instructive lecture upon this
vast subject. There is another series of arguments in favour of the
heavenly bodies being inhabited; I do not look upon that. Allow me only
to insist upon one point. To the people who maintain that the planets
are not inhabited you must answer, 'You may be right if it is
demonstrated that the earth is the best of possible worlds; but it is
not so, notwithstanding Voltaire.' It has only one satellite, whilst
Jupiter, Uranus, Saturn, and Neptune have several at their service, an
advantage that is not to be disdained. But that which now renders the
earth an uncomfortable place of abode is the inclination of its axis
upon its orbit. Hence the inequality of day and night; hence the
unfortunate diversity of seasons. Upon our miserable spheroid it is
always either too warm or too cold; we are frozen in winter and roasted
in summer; it is the planet of colds, rheumatism, and consumption,
whilst on the surface of Jupiter, for instance, where the axis has only
a very slight inclination, the inhabitants can enjoy invariable
temperature. There is the perpetual spring, summer, autumn, and winter
zone; each 'Jovian' may choose the climate that suits him, and may
shelter himself all his life from the variations of the temperature. You
will doubtless agree to this superiority of Jupiter over our planet
without speaking of its years, which each lasts twelve years! What is
more, it is evident to me that, under these auspices, and under such
marvellous conditions of existence, the inhabitants of that fortunate
world are superior beings--that _savants_ are more learned, artists more
artistic, the wicked less wicked, and the good are better. Alas! what is
wanting to our spheroid to reach this perfection is very little!--an
axis of rotation less inclined on the plane of its orbit."

"Well!" cried an impetuous voice, "let us unite our efforts, invent
machines, and rectify the earth's axis!"

Thunders of applause greeted this proposition, the author of which could
be no other than J.T. Maston. It is probable that the fiery secretary
had been carried away by his instincts as engineer to venture such a
proposition; but it must be said, for it is the truth, many encouraged
him with their cries, and doubtless, if they had found the resting-point
demanded by Archimedes, the Americans would have constructed a lever
capable of raising the world and redressing its axis. But this point was
wanting to these bold mechanicians.

Nevertheless, this eminently practical idea had enormous success: the
discussion was suspended for a good quarter of an hour, and long, very
long afterwards, they talked in the United States of America of the
proposition so energetically enunciated by the perpetual secretary of
the Gun Club.




CHAPTER XX.

THRUST AND PARRY.


This incident seemed to have terminated the discussion, but when the
agitation had subsided these words were heard uttered in a loud and
severe voice:--

"Now that the orator has allowed his fancy to roam, perhaps he would
kindly go back to his subject, pay less attention to theories, and
discuss the practical part of his expedition."

All eyes were turned towards the person who spoke thus. He was a thin,
dry-looking man, with an energetic face and an American beard. By taking
advantage of the agitation in the assembly from time to time he had
gained, by degrees, the front row of spectators. There, with his arms
crossed, his eyes brilliant and bold, he stared imperturbably at the
hero of the meeting. After having asked his question he kept silence,
and did not seem disturbed by the thousands of eyes directed towards him
nor by the disapproving murmur excited by his words. The answer being
delayed he again put the question with the same clear and precise
accent; then he added--

"We are here to discuss the moon, not the earth."

"You are right, sir," answered Michel Ardan, "the discussion has
wandered from the point; we will return to the moon."

"Sir," resumed the unknown man, "you pretend that our satellite is
inhabited. So far so good; but if Selenites do exist they certainly live
without breathing, for--I tell you the fact for your good--there is not
the least particle of air on the surface of the moon."

At this affirmation Ardan shook his red mane; he understood that a
struggle was coming with this man on the real question. He looked at him
fixedly in his turn, and said--

"Ah! there is no air in the moon! And who says so, pray?"

"The _savants_."

"Indeed?"

"Indeed."

"Sir," resumed Michel, "joking apart, I have a profound respect for
_savants_ who know, but a profound contempt for _savants_ who do not
know."

"Do you know any who belong to the latter category?"

"Yes; in France there is one who maintains that, 'mathematically,' a
bird cannot fly, and another who demonstrates that a fish is not made to
live in water."

"There is no question of those two, sir, and I can quote in support of
my proposition names that you will not object to."

"Then, sir, you would greatly embarrass a poor ignorant man like me!"

"Then why do you meddle with scientific questions which you have never
studied?" asked the unknown brutally.

"Why?" answered Ardan; "because the man who does not suspect danger is
always brave! I know nothing, it is true, but it is precisely my
weakness that makes my strength."

"Your weakness goes as far as madness," exclaimed the unknown in a
bad-tempered tone.

"So much the better," replied the Frenchman, "if my madness takes me to
the moon!"

Barbicane and his colleagues stared at the intruder who had come so
boldly to stand in the way of their enterprise. None of them knew him,
and the president, not reassured upon the upshot of such a discussion,
looked at his new friend with some apprehension. The assembly was
attentive and slightly uneasy, for this struggle called attention to the
dangers and impossibilities of the expedition.

"Sir," resumed Michel Ardan's adversary, "the reasons that prove the
absence of all atmosphere round the moon are numerous and indisputable.
I may say, even, that, _à priori_ if that atmosphere had ever existed,
it must have been drawn away by the earth, but I would rather oppose you
with incontestable facts."

"Oppose, sir," answered Michel Ardan, with perfect gallantry--oppose as
much as you like."

"You know," said the unknown, "that when the sun's rays traverse a
medium like air they are deviated from a straight line, or, in other
words, they are refracted. Well, when stars are occulted by the moon
their rays, on grazing the edge of her disc, do not show the least
deviation nor offer the slightest indication of refraction. It follows,
therefore, that the moon can have no atmosphere."

Every one looked at the Frenchman, for, this once admitted, the
consequences were rigorous.

"In fact," answered Michel Ardan, "that is your best if not only
argument, and a _savant_, perhaps, would be embarrassed to answer it. I
can only tell you that this argument has no absolute value because it
supposes the angular diameter of the moon to be perfectly determined,
which it is not. But let us waive that, and tell me, my dear sir, if
you admit the existence of volcanoes on the surface of the moon."

"Extinct volcanoes, yes; volcanoes in eruption, no."

"For the sake of argument let us suppose that these volcanoes have been
in eruption for a certain period."

"That is certain, but as they can themselves furnish the oxygen
necessary for combustion the fact of their eruption does not in the
least prove the presence of a lunar atmosphere."

"We will pass on, then," answered Michel Ardan, "and leave this series
of argument and arrive at direct observation. But I warn you that I am
going to quote names."

"Very well."

"In 1715 the astronomers Louville and Halley, observing the eclipse of
the 3rd of May, remarked certain fulminations of a remarkable nature.
These jets of light, rapid and frequent, were attributed by them to
storms in the atmosphere of the moon."

"In 1715," replied the unknown, "the astronomers Louville and Halley
took for lunar phenomena phenomena purely terrestrial, such as meteoric
or other bodies which are generated in our own atmosphere. That was the
scientific aspect of these facts, and I go with it."

"Let us pass on again," answered Ardan, without being confused by the
reply. "Did not Herschel, in 1787, observe a great number of luminous
points on the surface of the moon?"

"Certainly; but without explaining the origin of these luminous points.
Herschel himself did not thereby conclude the necessity of a lunar
atmosphere."

"Well answered," said Michel Ardan, complimenting his adversary; "I see
that you are well up in selenography."

"Yes, sir; and I may add that the most skilful observers, MM. Boeer and
Moedler, agree that air is absolutely wanting on the moon's surface."

A movement took place amongst the audience, who appeared struck by the
arguments of this singular personage.

"We will pass on again," answered Michel Ardan, with the greatest
calmness, "and arrive now at an important fact. A skilful French
astronomer, M. Laussedat, whilst observing the eclipse of July 18th,
1860, proved that the horns of the solar crescent were rounded and
truncated. Now this appearance could only have been produced by a
deviation of the solar rays in traversing the atmosphere of the moon.
There is no other possible explanation of the fact."

"But is this fact authenticated?"

"It is absolutely certain."

An inverse movement brought back the audience to the side of their
favourite hero, whose adversary remained silent.

Ardan went on speaking without showing any vanity about his last
advantage; he said simply--

"You see, therefore, my dear sir, that it cannot be positively affirmed
that there is no atmosphere on the surface of the moon. This atmosphere
is probably not dense, but science now generally admits that it exists."

"Not upon the mountains," replied the unknown, who would not give in.

"No, but in the depths of the valleys, and it is not more than some
hundreds of feet deep."

"Any way you will do well to take your precautions, for the air will be
terribly rarefied."

"Oh, there will always be enough for one man. Besides, once delivered up
there, I shall do my best to economise it and only to breathe it on
great occasions."

A formidable burst of laughter saluted the mysterious interlocutor, who
looked round the assembly daring it proudly.

"Then," resumed Michel Ardan, carelessly, "as we are agreed upon the
presence of some atmosphere, we are forced to admit the presence of some
water--a consequence I am delighted with, for my part. Besides, I have
another observation to make. We only know one side of the moon's disc,
and if there is little air on that side there may be much on the other."

"How so?"

"Because the moon under the action of terrestrial attraction has assumed
the form of an egg, of which we see the small end. Hence the consequence
due to the calculations of Hausen, that its centre of gravity is
situated in the other hemisphere. Hence this conclusion that all the
masses of air and water have been drawn to the other side of our
satellite in the first days of the creation."

"Pure fancies," exclaimed the unknown.

"No, pure theories based upon mechanical laws, and it appears difficult
to me to refute them. I make appeal to this assembly and put it to the
vote to know if life such as it exists upon earth is possible on the
surface of the moon?"

Three hundred thousand hearers applauded this proposition. Michel
Ardan's adversary wished to speak again, but he could not make himself
heard. Cries and threats were hailed upon him.

"Enough, enough!" said some.

"Turn him out!" repeated others.

But he, holding on to the platform, did not move, and let the storm
pass by. It might have assumed formidable proportions if Michel Ardan
had not appeased it by a gesture. He was too chivalrous to abandon his
contradicter in such an extremity.

"You wish to add a few words?" he asked, in the most gracious tone.

"Yes, a hundred! a thousand!" answered the unknown, carried away, "or
rather no, one only! To persevere in your enterprise you must be--"

"Imprudent! How can you call me that when I have asked for a
cylindro-conical bullet from my friend Barbicane so as not to turn round
on the road like a squirrel?"

"But, unfortunate man! the fearful shock will smash you to pieces when
you start."

"You have there put your finger upon the real and only difficulty; but I
have too good an opinion of the industrial genius of the Americans to
believe that they will not overcome that difficulty."

"But the heat developed by the speed of the projectile whilst crossing
the beds of air?"

"Oh, its sides are thick, and I shall so soon pass the atmosphere."

"But provisions? water?"

"I have calculated that I could carry enough for one year, and I shall
only be four days going."

"But air to breathe on the road?"

"I shall make some by chemical processes."

"But your fall upon the moon, supposing you ever get there?"

"It will be six times less rapid than a fall upon the earth, as
attraction is six times less on the surface of the moon."

"But it still will be sufficient to smash you like glass."

"What will prevent me delaying my fall by means of rockets conveniently
placed and lighted at the proper time?"

"But lastly, supposing that all difficulties be solved, all obstacles
cleared away by uniting every chance in your favour, admitting that you
reach the moon safe and well, how shall you come back?"

"I shall not come back."

Upon this answer, which was almost sublime by reason of its simplicity,
the assembly remained silent. But its silence was more eloquent than its
cries of enthusiasm would have been. The unknown profited by it to
protest one last time.

"You will infallibly kill yourself," he cried, "and your death, which
will be only a madman's death, will not even be useful to science."

"Go on, most generous of men, for you prophesy in the most agreeable
manner."

"Ah, it is too much!" exclaimed Michel Ardan's adversary, "and I do not
know why I go on with so childish a discussion. Go on with your mad
enterprise as you like. It is not your fault."

"Fire away."

"No, another must bear the responsibility of your acts."

"Who is that, pray?" asked Michel Ardan in an imperious voice.

"The fool who has organised this attempt, as impossible as it is
ridiculous."

The attack was direct. Barbicane since the intervention of the unknown
had made violent efforts to contain himself and "consume his own smoke,"
but upon seeing himself so outrageously designated he rose directly and
was going to walk towards his adversary, who dared him to his face, when
he felt himself suddenly separated from him.

The platform was lifted up all at once by a hundred vigorous arms, and
the president of the Gun Club was forced to share the honours of triumph
with Michel Ardan. The platform was heavy, but the bearers came in
continuous relays, disputing, struggling, even fighting for the
privilege of lending the support of their shoulders to this
manifestation.

However, the unknown did not take advantage of the tumult to leave the
place. He kept in the front row, his arms folded, still staring at
President Barbicane.

The president did not lose sight of him either, and the eyes of these
two men met like flaming swords.

The cries of the immense crowds kept at their maximum of intensity
during this triumphant march. Michel Ardan allowed himself to be carried
with evident pleasure.

Sometimes the platform pitched and tossed like a ship beaten by the
waves. But the two heroes of the meeting were good sailors, and their
vessel safely arrived in the port of Tampa Town.

Michel Ardan happily succeeded in escaping from his vigorous admirers.
He fled to the Franklin Hotel, quickly reached his room, and glided
rapidly into bed whilst an army of 100,000 men watched under his
windows.

In the meanwhile a short, grave, and decisive scene had taken place
between the mysterious personage and the president of the Gun Club.

Barbicane, liberated at last, went straight to his adversary.

"Come!" said he in a curt voice.

The stranger followed him on to the quay, and they were soon both alone
at the entrance to a wharf opening on to Jones' Fall.

There these enemies, still unknown to one another, looked at each other.

"Who are you?" asked Barbicane.

"Captain Nicholl."

"I thought so. Until now fate has never made you cross my path."

"I crossed it of my own accord."

"You have insulted me."

"Publicly."

"And you shall give me satisfaction for that insult."

"Now, this minute."

"No. I wish everything between us to be kept secret. There is a wood
situated three miles from Tampa--Skersnaw Wood. Do you know it?"

"Yes."

"Will you enter it to-morrow morning at five o'clock by one side?"

"Yes, if you will enter it by the other at the same time."

"And you will not forget your rifle?" said Barbicane.

"Not more than you will forget yours," answered Captain Nicholl.

After these words had been coldly pronounced the president of the Gun
Club and the captain separated. Barbicane returned to his dwelling; but,
instead of taking some hours' rest, he passed the night in seeking means
to avoid the shock of the projectile, and to solve the difficult problem
given by Michel Ardan at the meeting.




CHAPTER XXI.

HOW A FRENCHMAN SETTLES AN AFFAIR.


Whilst the duel was being discussed between the president and the
captain--a terrible and savage duel in which each adversary became a
man-hunter--Michel Ardan was resting after the fatigues of his triumph.
Resting is evidently not the right expression, for American beds rival
in hardness tables of marble or granite.

Ardan slept badly, turning over and over between the _serviettes_ that
served him for sheets, and he was thinking of installing a more
comfortable bed in his projectile when a violent noise startled him from
his slumbers. Thundering blows shook his door. They seemed to be
administered with an iron instrument. Shouts were heard in this racket,
rather too early to be agreeable.

"Open!" some one cried. "Open, for Heaven's sake!"

There was no reason why Ardan should acquiesce in so peremptory a
demand. Still he rose and opened his door at the moment it was giving
way under the efforts of the obstinate visitor.

The secretary of the Gun Club bounded into the room. A bomb would not
have entered with less ceremony.

"Yesterday evening," exclaimed J.T. Maston _ex abrupto_, "our president
was publicly insulted during the meeting! He has challenged his
adversary, who is no other than Captain Nicholl! They are going to fight
this morning in Skersnaw Wood! I learnt it all from Barbicane himself!
If he is killed our project will be at an end! This duel must be
prevented! Now one man only can have enough empire over Barbicane to
stop it, and that man is Michel Ardan."

Whilst J.T. Maston was speaking thus, Michel Ardan, giving up
interrupting him, jumped into his vast trousers, and in less than two
minutes after the two friends were rushing as fast as they could go
towards the suburbs of Tampa Town.

It was during this rapid course that Maston told Ardan the state of the
case. He told him the real causes of the enmity between Barbicane and
Nicholl, how that enmity was of old date, why until then, thanks to
mutual friends, the president and the captain had never met; he added
that it was solely a rivalry between iron-plate and bullet; and, lastly,
that the scene of the meeting had only been an occasion long sought by
Nicholl to satisfy an old grudge.

There is nothing more terrible than these private duels in America,
during which the two adversaries seek each other across thickets, and
hunt each other like wild animals. It is then that each must envy those
marvellous qualities so natural to the Indians of the prairies, their
rapid intelligence, their ingenious ruse, their scent of the enemy. An
error, a hesitation, a wrong step, may cause death. In these meetings
the Yankees are often accompanied by their dogs, and both sportsmen and
game go on for hours.

"What demons you are!" exclaimed Michel Ardan, when his companion had
depicted the scene with much energy.

"We are what we are," answered J.T. Maston modestly; "but let us make
haste."

In vain did Michel Ardan and he rush across the plain still wet with
dew, jump the creeks, take the shortest cuts; they could not reach
Skersnaw Wood before half-past five. Barbicane must have entered it
half-an-hour before.

There an old bushman was tying up faggots his axe had cut.

Maston ran to him crying--

"Have you seen a man enter the wood armed with a rifle? Barbicane, the
president--my best friend?"

The worthy secretary of the Gun Club thought naïvely that all the world
must know his president. But the bushman did not seem to understand.

"A sportsman," then said Ardan.

"A sportsman? Yes," answered the bushman.

"Is it long since?"

"About an hour ago."

"Too late!" exclaimed Maston.

"Have you heard any firing?" asked Michel Ardan.

"No."

"Not one shot?"

"Not one. That sportsman does not seem to bag much game!"

"What shall we do?" said Maston.

"Enter the wood at the risk of catching a bullet not meant for us."

"Ah!" exclaimed Maston, with an unmistakable accent, "I would rather
have ten bullets in my head than one in Barbicane's head."

"Go ahead, then!" said Ardan, pressing his companion's hand.

A few seconds after the two companions disappeared in a copse. It was a
dense thicket made of huge cypresses, sycamores, tulip-trees, olives,
tamarinds, oaks, and magnolias. The different trees intermingled their
branches in inextricable confusion, and quite hid the view. Michel Ardan
and Maston walked on side by side phasing silently through the tall
grass, making a road for themselves through the vigorous creepers,
looking in all the bushes or branches lost in the sombre shade of the
foliage, and expecting to hear a shot at every step. As to the traces
that Barbicane must have left of his passage through the wood, it was
impossible for them to see them, and they marched blindly on in the
hardly-formed paths in which an Indian would have followed his adversary
step by step.

After a vain search of about an hour's length the two companions
stopped. Their anxiety was redoubled.

"It must be all over," said Maston in despair. "A man like Barbicane
would not lay traps or condescend to any manoeuvre! He is too frank, too
courageous. He has gone straight into danger, and doubtless far enough
from the bushman for the wind to carry off the noise of the shot!"

"But we should have heard it!" answered Michel Ardan.

"But what if we came too late?" exclaimed J.T. Maston in an accent of
despair.

Michel Ardan did not find any answer to make. Maston and he resumed
their interrupted walk. From time to time they shouted; they called
either Barbicane or Nicholl; but neither of the two adversaries
answered. Joyful flocks of birds, roused by the noise, disappeared
amongst the branches, and some frightened deer fled through the copses.

They continued their search another hour. The greater part of the wood
had been explored. Nothing revealed the presence of the combatants. They
began to doubt the affirmation of the bushman, and Ardan was going to
renounce the pursuit as useless, when all at once Maston stopped.

"Hush!" said he. "There is some one yonder!"

"Some one?" answered Michel Ardan.

"Yes! a man! He does not seem to move. His rifle is not in his hand.
What can he be doing?"

"But do you recognise him?" asked Michel Ardan.

"Yes, yes! he is turning round," answered Maston.

"Who is it?"

"Captain Nicholl!"

"Nicholl!" cried Michel Ardan, whose heart almost stopped beating.

"Nicholl disarmed! Then he had nothing more to fear from his adversary?"

"Let us go to him," said Michel Ardan; "we shall know how it is."

But his companion and he had not gone fifty steps when they stopped to
examine the captain more attentively. They imagined they should find a
bloodthirsty and revengeful man. Upon seeing him they remained
stupefied.

A net with fine meshes was hung between two gigantic tulip-trees, and in
it a small bird, with its wings entangled, was struggling with plaintive
cries. The bird-catcher who had hung the net was not a human being but a
venomous spider, peculiar to the country, as large as a pigeon's egg,
and furnished with enormous legs. The hideous insect, as he was rushing
on his prey, was forced to turn back and take refuge in the high
branches of a tulip-tree, for a formidable enemy threatened him in his
turn.

In fact, Captain Nicholl, with his gun on the ground, forgetting the
dangers of his situation, was occupied in delivering as delicately as
possible the victim taken in the meshes of the monstrous spider. When he
had finished he let the little bird fly away; it fluttered its wings
joyfully and disappeared.

Nicholl, touched, was watching it fly through the copse when he heard
these words uttered in a voice full of emotion:--

"You are a brave man, you are!"

He turned. Michel Ardan was in front of him, repeating in every tone--

"And a kind one!"

"Michel Ardan!" exclaimed the captain, "what have you come here for,
sir?"

"To shake hands with you, Nicholl, and prevent you killing Barbicane or
being killed by him."

"Barbicane!" cried the captain, "I have been looking for him these two
hours without finding him! Where is he hiding himself?"

"Nicholl!" said Michel Ardan, "this is not polite! You must always
respect your adversary; don't be uneasy; if Barbicane is alive we shall
find him, and so much the more easily that if he has not amused himself
with protecting birds he must be looking for you too. But when you have
found him--and Michel Ardan tells you this--there will be no duel
between you."

"Between President Barbicane and me," answered Nicholl gravely, "there
is such rivalry that the death of one of us--"

"Come, come!" resumed Michel Ardan, "brave men like you may detest one
another, but they respect one another too. You will not fight."

"I shall fight, sir."

"No you won't."

"Captain," then said J.T. Maston heartily, "I am the president's friend,
his _alter ego_; if you must absolutely kill some one kill me; that will
be exactly the same thing."

"Sir," said Nicholl, convulsively seizing his rifle, "this joking--"

"Friend Maston is not joking," answered Michel Ardan, "and I understand
his wanting to be killed for the man he loves; but neither he nor
Barbicane will fall under Captain Nicholl's bullets, for I have so
tempting a proposition to make to the two rivals that they will hasten
to accept it."

"But what is it, pray?" asked Nicholl, with visible incredulity.

"Patience," answered Ardan; "I can only communicate it in Barbicane's
presence."

"Let us look for him, then," cried the captain.

The three men immediately set out; the captain, having discharged his
rifle, threw it on his shoulder and walked on in silence.

During another half-hour the search was in vain. Maston was seized with
a sinister presentiment. He observed Captain Nicholl closely, asking
himself if, once the captain's vengeance satisfied, the unfortunate
Barbicane had not been left lying in some bloody thicket. Michel Ardan
seemed to have the same thought, and they were both looking
questioningly at Captain Nicholl when Maston suddenly stopped.

The motionless bust of a man leaning against a gigantic catalpa appeared
twenty feet off half hidden in the grass.

"It is he!" said Maston.

Barbicane did not move. Ardan stared at the captain, but he did not
wince. Ardan rushed forward, crying--

"Barbicane! Barbicane!"

No answer. Ardan was about to seize his arm; he stopped short, uttering
a cry of surprise.

Barbicane, with a pencil in his hand, was tracing geometrical figures
upon a memorandum-book, whilst his unloaded gun lay on the ground.

Absorbed in his work, the _savant_, forgetting in his turn his duel and
his vengeance, had neither seen nor heard anything.

But when Michel Ardan placed his hand on that of the president, he got
up and looked at him with astonishment.

"Ah!" cried he at last; "you here! I have found it, my friend, I have
found it!"

"What?"

"The way to do it."

"The way to do what?"

"To counteract the effect of the shock at the departure of the
projectile."

"Really?" said Michel, looking at the captain out of the corner of his
eye.

"Yes, water! simply water, which will act as a spring. Ah, Maston!"
cried Barbicane, "you too!"

"Himself," answered Michel Ardan; "and allow me to introduce at the same
time the worthy Captain Nicholl."

"Nicholl!" cried Barbicane, up in a moment. "Excuse me, captain," said
he; "I had forgotten. I am ready."

Michel Ardan interfered before the two enemies had time to recriminate.

"Faith," said he, "it is fortunate that brave fellows like you did not
meet sooner. We should now have to mourn for one or other of you; but,
thanks to God, who has prevented it, there is nothing more to fear. When
one forgets his hatred to plunge into mechanical problems and the other
to play tricks on spiders, their hatred cannot be dangerous to anybody."

And Michel Ardan related the captain's story to the president.

"I ask you now," said he as he concluded, "if two good beings like you
were made to break each other's heads with gunshots?"

There was in this rather ridiculous situation something so unexpected,
that Barbicane and Nicholl did not know how to look at one another.
Michel Ardan felt this, and resolved to try for a reconciliation.

"My brave friends," said he, smiling in his most fascinating manner, "it
has all been a mistake between you, nothing more. Well, to prove that
all is ended between you, and as you are men who risk your lives,
frankly accept the proposition that I am going to make to you."

"Speak," said Nicholl.

"Friend Barbicane believes that his projectile will go straight to the
moon."

"Yes, certainly," replied the president.

"And friend Nicholl is persuaded that it will fall back on the earth."

"I am certain of it," cried the captain.

"Good," resumed Michel Ardan. "I do not pretend to make you agree; all I
say to you is, 'Come with me, and see if we shall stop on the road.'"

"What?" said J.T. Maston, stupefied.

The two rivals at this sudden proposition had raised their eyes and
looked at each other attentively. Barbicane waited for Captain Nicholl's
answer; Nicholl awaited the president's reply.

"Well," said Michel in his most engaging tone, "as there is now no shock
to fear----"

"Accepted!" cried Barbicane.

But although this word was uttered very quickly, Nicholl had finished it
at the same time.

"Hurrah! bravo!" cried Michel Ardan, holding out his hands to the two
adversaries. "And now that the affair is arranged, my friends, allow me
to treat you French fashion. _Allons déjeuner_."




CHAPTER XXII.

THE NEW CITIZEN OF THE UNITED STATES.


That day all America heard about the duel and its singular termination.
The part played by the chivalrous European, his unexpected proposition
which solved the difficulty, the simultaneous acceptation of the two
rivals, that conquest of the lunar continent to which France and the
United States were going to march in concert--everything tended to
increase Michel Ardan's popularity. It is well known how enthusiastic
the Yankees will get about an individual. In a country where grave
magistrates harness themselves to a dancer's carriage and draw it in
triumph, it may be judged how the bold Frenchman was treated. If they
did not take out his horses it was probably because he had none, but all
other marks of enthusiasm were showered upon him. There was no citizen
who did not join him heart and mind:--_Ex pluribus unam_, according to
the motto of the United States.

From that day Michel Ardan had not a minute's rest. Deputations from all
parts of the Union worried him incessantly. He was forced to receive
them whether he would or no. The hands he shook could not be counted; he
was soon completely worn out, his voice became hoarse in consequence of
his innumerable speeches, and only escaped from his lips in
unintelligible sounds, and he nearly caught a gastro-enterite after the
toasts he proposed to the Union. This success would have intoxicated
another man from the first, but he managed to stay in a _spirituelle_
and charming demi-inebriety.

Amongst the deputations of every sort that assailed him, that of the
"Lunatics" did not forget what they owed to the future conqueror of the
moon. One day some of these poor creatures, numerous enough in America,
went to him and asked to return with him to their native country. Some
of them pretended to speak "Selenite," and wished to teach it to Michel
Ardan, who willingly lent himself to their innocent mania, and promised
to take their messages to their friends in the moon.

"Singular folly!" said he to Barbicane, after having dismissed them;
"and a folly that often takes possession of men of great intelligence.
One of our most illustrious _savants_, Arago, told me that many very
wise and reserved people in their conceptions became much excited and
gave way to incredible singularities every time the moon occupied them.
Do you believe in the influence of the moon upon maladies?"

"Very little," answered the president of the Gun Club.

"I do not either, and yet history has preserved some facts that, to say
the least, are astonishing. Thus in 1693, during an epidemic, people
perished in the greatest numbers on the 21st of January, during an
eclipse. The celebrated Bacon fainted during the moon eclipses, and only
came to himself after its entire emersion. King Charles VI. relapsed six
times into madness during the year 1399, either at the new or full moon.
Physicians have ranked epilepsy amongst the maladies that follow the
phases of the moon. Nervous maladies have often appeared to be
influenced by it. Mead speaks of a child who had convulsions when the
moon was in opposition. Gall remarked that insane persons underwent an
accession of their disorder twice in every month, at the epochs of the
new and full moon. Lastly, a thousand observations of this sort made
upon malignant fevers and somnambulism tend to prove that the Queen of
Night has a mysterious influence upon terrestrial maladies."

"But how? why?" asked Barbicane.

"Why?" answered Ardan. "Why, the only thing I can tell you is what Arago
repeated nineteen centuries after Plutarch. Perhaps it is because it is
not true."

In the height of his triumph Michel Ardan could not escape any of the
annoyances incidental to a celebrated man. Managers of entertainments
wished to exhibit him. Barnum offered him a million dollars to show him
as a curious animal in the different towns of the United States.

Still, though he refused to satisfy public curiosity in that way, his
portraits went all over the world, and occupied the place of honour in
albums; proofs were made of all sizes from life size to medallions.
Every one could possess the hero in all positions--head, bust, standing,
full-face, profile, three-quarters, back. Fifteen hundred thousand
copies were taken, and it would have been a fine occasion to get money
by relics, but he did not profit by it. If he had sold his hairs for a
dollar apiece there would have remained enough to make his fortune!

To tell the truth, this popularity did not displease him. On the
contrary, he put himself at the disposition of the public, and
corresponded with the entire universe. They repeated his witticisms,
especially those he did not perpetrate.

Not only had he all the men for him, but the women too. What an infinite
number of good marriages he might have made if he had taken a fancy to
"settle!" Old maids especially dreamt before his portraits day and
night.

It is certain that he would have found female companions by hundreds,
even if he had imposed the condition of following him up into the air.
Women are intrepid when they are not afraid of everything. But he had no
intention of transplanting a race of Franco-Americans upon the lunar
continent, so he refused.

"I do not mean," said he, "to play the part of Adam with a daughter of
Eve up there. I might meet with serpents!"

As soon as he could withdraw from the joys of triumph, too often
repeated, he went with his friends to pay a visit to the Columbiad. He
owed it that. Besides, he was getting very learned in ballistics since
he had lived with Barbicane, J.T. Maston, and _tutti quanti_. His
greatest pleasure consisted in repeating to these brave artillerymen
that they were only amiable and learned murderers. He was always joking
about it. The day he visited the Columbiad he greatly admired it, and
went down to the bore of the gigantic mortar that was soon to hurl him
towards the Queen of Night.

"At least," said he, "that cannon will not hurt anybody, which is
already very astonishing on the part of a cannon. But as to your engines
that destroy, burn, smash, and kill, don't talk to me about them!"

It is necessary to report here a proposition made by J.T. Maston. When
the secretary of the Gun Club heard Barbicane and Nicholl accept Michel
Ardan's proposition he resolved to join them, and make a party of four.
One day he asked to go. Barbicane, grieved at having to refuse, made him
understand that the projectile could not carry so many passengers. J.T.
Maston, in despair, went to Michel Ardan, who advised him to be
resigned, adding one or two arguments _ad hominem_.

"You see, old fellow," he said to him, "you must not be offended, but
really, between ourselves, you are too incomplete to present yourself in
the moon."

"Incomplete!" cried the valiant cripple.

"Yes, my brave friend. Suppose we should meet with inhabitants up there.
Do you want to give them a sorry idea of what goes on here, teach them
what war is, show them that we employ the best part of our time in
devouring each other and breaking arms and limbs, and that upon a globe
that could feed a hundred thousand millions of inhabitants, and where
there are hardly twelve hundred millions? Why, my worthy friend, you
would have us shown to the door!"

"But if you arrive smashed to pieces," replied J.T. Maston, "you will be
as incomplete as I."

"Certainly," answered Michel Ardan, "but we shall not arrive in pieces."

In fact, a preparatory experiment, tried on the 18th of October, had
been attended with the best results, and given rise to the most
legitimate hopes. Barbicane, wishing to know the effect of the shock at
the moment of the projectile's departure, sent for a 32-inch mortar from
Pensacola Arsenal. It was installed upon the quay of Hillisboro Harbour,
in order that the bomb might fall into the sea, and the shock of its
fall be deadened. He only wished to experiment upon the shock of its
departure, not that of its arrival.

A hollow projectile was prepared with the greatest care for this curious
experiment. A thick wadding put upon a network of springs made of the
best steel lined it inside. It was quite a wadded nest.

"What a pity one can't go in it!" said J.T. Maston, regretting that his
size did not allow him to make the venture.

Into this charming bomb, which was closed by means of a lid, screwed
down, they put first a large cat, then a squirrel belonging to the
perpetual secretary of the Gun Club, which J.T. Maston was very fond of.
But they wished to know how this little animal, not likely to be giddy,
would support this experimental journey.

The mortar was loaded with 160 lbs. of powder and the bomb. It was then
fired.

The projectile immediately rose with rapidity, described a majestic
parabola, attained a height of about a thousand feet, and then with a
graceful curve fell into the waves.

Without losing an instant, a vessel was sent to the spot where it fell;
skilful divers sank under water and fastened cable-chains to the handles
of the bomb, which was rapidly hoisted on board. Five minutes had not
elapsed between the time the animals were shut up and the unscrewing of
their prison lid.

Ardan, Barbicane, Maston, and Nicholl were upon the vessel, and they
assisted at the operation with a sentiment of interest easy to
understand. The bomb was hardly opened before the cat sprang out, rather
bruised but quite lively, and not looking as if it had just returned
from an aërial expedition. But nothing, was seen of the squirrel. The
truth was then discovered. The cat had eaten its travelling companion.

J.T. Maston was very grieved at the loss of his poor squirrel, and
proposed to inscribe it in the martyrology of science.

However that may be, after this experiment all hesitation and fear were
at an end; besides, Barbicane's plans were destined further to perfect
the projectile, and destroy almost entirely the effect of the shock.
There was nothing more to do but to start.

Two days later Michel Ardan received a message from the President of
the Union, an honour which he much appreciated.

After the example of his chivalrous countryman, La Fayette, the
government had bestowed upon him the title of "Citizen of the United
States of America."




CHAPTER XXIII.

THE PROJECTILE COMPARTMENT.


After the celebrated Columbiad was completed public interest immediately
centred upon the projectile, the new vehicle destined to transport the
three bold adventurers across space. No one had forgotten that in his
despatch of September 30th Michel Ardan asked for a modification of the
plans laid out by the members of the committee.

President Barbicane then thought with reason that the form of the
projectile was of slight importance, for, after crossing the atmosphere
in a few seconds, it would meet with vacuum. The committee had therefore
chosen the round form, so that the ball might turn over and over and do
as it liked. But as soon as it had to be made into a vehicle, that was
another thing. Michel Ardan did not want to travel squirrel-fashion; he
wished to go up head up and feet down with as much dignity as in the car
of a balloon, quicker of course, but without unseemly gambols.

New plans were, therefore, sent to the firm of Breadwill and Co., of
Albany, with the recommendation to execute them without delay. The
projectile, thus modified, was cast on the 2nd of November, and sent
immediately to Stony Hill by the Eastern Railway.

On the 10th it arrived without accident at its place of destination.
Michel Ardan, Barbicane, and Nicholl awaited with the most lively
impatience this "projectile compartment" in which they were to take
their passage for the discovery of a new world.

It must be acknowledged that it was a magnificent piece of metal, a
metallurgic production that did the greatest honour to the industrial
genius of the Americans. It was the first time that aluminium had been
obtained in so large a mass, which result might be justly regarded as
prodigious. This precious projectile sparkled in the rays of the sun.
Seeing it in its imposing shape with its conical top, it might easily
have been taken for one of those extinguisher-shaped towers that
architects of the Middle Ages put at the angles of their castles. It
only wanted loopholes and a weathercock.

"I expect," exclaimed Michel Ardan, "to see a man armed _cap-à-pie_ come
out of it. We shall be like feudal lords in there; with a little
artillery we could hold our own against a whole army of Selenites--that
is, if there are any in the moon!"

"Then the vehicle pleases you?" asked Barbicane.

"Yes, yes! certainly," answered Michel Ardan, who was examining it as an
artist. "I only regret that its form is not a little more slender, its
cone more graceful; it ought to be terminated by a metal group, some
Gothic ornament, a salamander escaping from it with outspread wings and
open beak."

"What would be the use?" said Barbicane, whose positive mind was little
sensitive to the beauties of art.

"Ah, friend Barbicane, I am afraid you will never understand the use, or
you would not ask!"

"Well, tell me, at all events, my brave companion."

"Well, my friend, I think we ought always to put a little art in all we
do. Do you know an Indian play called _The Child's Chariot_?"

"Not even by name," answered Barbicane.

"I am not surprised at that," continued Michel Ardan. "Learn, then, that
in that play there is a robber who, when in the act of piercing the wall
of a house, stops to consider whether he shall make his hole in the
shape of a lyre, a flower, or a bird. Well, tell me, friend Barbicane,
if at that epoch you had been his judge would you have condemned that
robber?"

"Without hesitation," answered the president of the Gun Club, "and as a
burglar too."

"Well, I should have acquitted him, friend Barbicane. That is why you
could never understand me."

"I will not even try, my valiant artist."

"But, at least," continued Michel Ardan, "as the exterior of our
projectile compartment leaves much to be desired, I shall be allowed to
furnish the inside as I choose, and with all luxury suitable to
ambassadors from the earth."

"About that, my brave Michel," answered Barbicane, "you can do entirely
as you please."

But before passing to the agreeable the president of the Gun Club had
thought of the useful, and the means he had invented for lessening the
effects of the shock were applied with perfect intelligence.

Barbicane had said to himself, not unreasonably, that no spring would be
sufficiently powerful to deaden the shock, and during his famous
promenade in Skersnaw Wood he had ended by solving this great difficulty
in an ingenious fashion. He depended upon water to render him this
signal service. This is how:--

The projectile was to be filled to the depth of three feet with water
destined to support a water-tight wooden disc, which easily worked
within the walls of the projectile. It was upon this raft that the
travellers were to take their place. As to the liquid mass, it was
divided by horizontal partitions which the departing shock would
successively break; then each sheet of water, from the lowest to the
highest, escaping by valves in the upper part of the projectile, thus
making a spring, and the disc, itself furnished with extremely powerful
buffers, could not strike the bottom until it had successively broken
the different partitions. The travellers would doubtless feel a violent
recoil after the complete escape of the liquid mass, but the first shock
would be almost entirely deadened by so powerful a spring.

It is true that three feet on a surface of 541 square feet would weigh
nearly 11,500 lbs; but the escape of gas accumulated in the Columbiad
would suffice, Barbicane thought to conquer that increase of weight;
besides, the shock would send out all that water in less than a second,
and the projectile would soon regain its normal weight.

This is what the president of the Gun Club had imagined, and how he
thought he had solved the great question of the recoil. This work,
intelligently comprehended by the engineers of the Breadwill firm, was
marvellously executed; the effect once produced and the water gone, the
travellers could easily get rid of the broken partitions and take away
the mobile disc that bore them at the moment of departure.

As to the upper sides of the projectile, they were lined with a thick
wadding of leather, put upon the best steel springs as supple as
watch-springs. The escape-pipes hidden under this wadding were not even
seen.

All imaginable precautions for deadening the first shock having been
taken, Michel Ardan said they must be made of "very bad stuff" to be
crushed.

The projectile outside was nine feet wide and twelve feet high. In order
not to pass the weight assigned the sides had been made a little less
thick and the bottom thicker, as it would have to support all the
violence of the gases developed by the deflagration of the pyroxyle.
Bombs and cylindro-conical howitzers are always made with thicker
bottoms.

The entrance to this tower of metal was a narrow opening in the wall of
the cone, like the "man-hole" of steam boilers. It closed hermetically
by means of an aluminium plate fastened inside by powerful screw
pressure. The travellers could therefore leave their mobile prison at
will as soon as they had reached the Queen of Night.

But going was not everything; it was necessary to see on the road.
Nothing was easier. In fact, under the wadding were four thick
lenticular footlights, two let into the circular wall of the projectile,
the third in its lower part, and the fourth in its cone. The travellers
could, therefore, observe during their journey the earth they were
leaving, the moon they were approaching, and the constellated spaces of
the sky. These skylights were protected against the shocks of departure
by plates let into solid grooves, which it was easy to move by
unscrewing them. By that means the air contained in the projectile could
not escape, and it was possible to make observations.

All these mechanical appliances, admirably set, worked with the greatest
ease, and the engineers had not shown themselves less intelligent in the
arrangement of the projectile compartment.

Lockers solidly fastened were destined to contain the water and
provisions necessary for the three travellers; they could even procure
themselves fire and light by means of gas stored up in a special case
under a pressure of several atmospheres. All they had to do was to turn
a tap, and the gas would light and warm this comfortable vehicle for six
days. It will be seen that none of the things essential to life, or even
to comfort, were wanting. More, thanks to the instincts of Michel Ardan,
the agreeable was joined to the useful under the form of objects of art;
he would have made a veritable artist's studio of his projectile if room
had not been wanting. It would be mistaken to suppose that three persons
would be restricted for space in that metal tower. It had a surface of
54 square feet, and was nearly 10 feet high, and allowed its occupiers a
certain liberty of movement. They would not have been so much at their
ease in the most comfortable railway compartment of the United States.

The question of provisions and lighting having been solved, there
remained the question of air. It was evident that the air confined in
the projectile would not be sufficient for the travellers' respiration
for four days; each man, in fact, consumes in one hour all the oxygen
contained in 100 litres of air. Barbicane, his two companions, and two
dogs that he meant to take, would consume every twenty-four hours 2,400
litres of oxygen, or a weight equal to 7 lbs. The air in the projectile
must, therefore, be renewed. How? By a very simple method, that of
Messrs. Reiset and Regnault, indicated by Michel Ardan during the
discussion of the meeting.

It is known that the air is composed principally of twenty-one parts of
oxygen and seventy-nine parts of azote. Now what happens in the act of
respiration? A very simple phenomenon, Man absorbs the oxygen of the
air, eminently adapted for sustaining life, and throws out the azote
intact. The air breathed out has lost nearly five per cent, of its
oxygen, and then contains a nearly equal volume of carbonic acid, the
definitive product of the combustion of the elements of the blood by the
oxygen breathed in it. It happens, therefore, that in a confined space
and after a certain time all the oxygen of the air is replaced by
carbonic acid, an essentially deleterious gas.

The question was then reduced to this, the azote being conserved
intact--1. To remake the oxygen absorbed; 2. To destroy the carbonic
acid breathed out. Nothing easier to do by means of chlorate of potash
and caustic potash. The former is a salt which appears under the form of
white crystals; when heated to a temperature of 400° it is transformed
into chlorine of potassium, and the oxygen which it contains is given
off freely. Now 18 lbs. of chlorate of potash give 7 lbs of oxygen--that
is to say, the quantity necessary to the travellers for twenty-four
hours.

As to caustic potash, it has a great affinity for carbonic acid mixed in
air, and it is sufficient to shake it in order for it to seize upon the
acid and form bicarbonate of potash. So much for the absorption of
carbonic acid.

By combining these two methods they were certain of giving back to
vitiated air all its life-giving qualities. The two chemists, Messrs.
Reiset and Regnault, had made the experiment with success.

But it must be said the experiment had only been made _in anima vili_.
Whatever its scientific accuracy might be, no one knew how man could
bear it.

Such was the observation made at the meeting where this grave question
was discussed. Michel Ardan meant to leave no doubt about the
possibility of living by means of this artificial air, and he offered to
make the trial before the departure.

But the honour of putting it to the proof was energetically claimed by
J.T. Maston.

"As I am not going with you," said the brave artilleryman, "the least I
can do will be to live in the projectile for a week."

It would have been ungracious to refuse him. His wish was complied with.
A sufficient quantity of chlorate of potash and caustic potash was
placed at his disposition, with provisions for a week; then having
shaken hands with his friends, on the 12th of November at 6 a.m., after
having expressly recommended them not to open his prison before the 20th
at 6 p.m., he crept into the projectile, the iron plate of which was
hermetically shut.

What happened during that week? It was impossible to ascertain. The
thickness of the projectile's walls prevented any interior noise from
reaching the outside.

On the 20th of November, at six o'clock precisely, the plate was
removed; the friends of J.T. Maston were rather uneasy. But they were
promptly reassured by hearing a joyful voice shouting a formidable
hurrah!

The secretary of the Gun Club appeared on the summit of the cone in a
triumphant attitude.

He had grown fat!




CHAPTER XXIV.

THE TELESCOPE OF THE ROCKY MOUNTAINS.


On the 20th of October of the preceding year, after the subscription
list was closed, the president of the Gun Club had credited the
Cambridge Observatory with the sums necessary for the construction of a
vast optical instrument. This telescope was to be powerful enough to
render visible on the surface of the moon an object being at least nine
feet wide.

There is an important difference between a field-glass and a telescope,
which it is well to recall here. A field-glass is composed of a tube
which carries at its upper extremity a convex glass called an
object-glass, and at its lower extremity a second glass called ocular,
to which the eye of the observer is applied. The rays from the luminous
object traverse the first glass, and by refraction form an image upside
down at its focus. This image is looked at with the ocular, which
magnifies it. The tube of the field-glass is, therefore, closed at each
extremity by the object and the ocular glasses.

The telescope, on the contrary, is open at its upper extremity. The rays
from the object observed penetrate freely into it, and strike a concave
metallic mirror--that is to say, they are focussed. From thence their
reflected rays meet with a little mirror, which sends them back to the
ocular in such a way as to magnify the image produced.

Thus in field-glasses refraction plays the principal part, and
reflection does in the telescope. Hence the name of refractors given to
the former, and reflectors given to the latter. All the difficulty in
the execution of these optical instruments lies in the making of the
object-glass, whether they be made of glass or metallic mirrors.

Still at the epoch when the Gun Club made its great experiment these
instruments were singularly perfected and gave magnificent results. The
time was far distant when Galileo observed the stars with his poor
glass, which magnified seven times at the most. Since the 16th century
optical instruments had widened and lengthened in considerable
proportions, and they allowed the stellar spaces to be gauged to a depth
unknown before. Amongst the refracting instruments at work at that
period were the glass of the Poulkowa Observatory in Russia, the
object-glass of which measured 15 inches in width, that of the French
optician Lerebours, furnished with an object-glass equally large, and
lastly that of the Cambridge Observatory, furnished with an object-glass
19 inches in diameter.

Amongst telescopes, two were known of remarkable power and gigantic
dimensions. The first, constructed by Herschel, was 36 feet in length,
and had an object-glass of 4 feet 6 inches; it magnified 6,000 times;
the second, raised in Ireland, at Birrcastle, in Parsonstown Park,
belonged to Lord Rosse; the length of its tube was 48 feet and the width
of its mirror 6 feet; it magnified 6,400 times, and it had required an
immense erection of masonry on which to place the apparatus necessary
for working the instrument, which weighed 12-1/2 tons.

But it will be seen that notwithstanding these colossal dimensions the
magnifying power obtained did not exceed 6,000 times in round numbers;
now that power would only bring the moon within 39 miles, and would only
allow objects 60 feet in diameter to be perceived unless these objects
were very elongated.

Now in space they had to deal with a projectile 9 feet wide and 15 long,
so the moon had to be brought within five miles at least, and for that a
magnifying power of 48,000 times was necessary.

Such was the problem propounded to the Cambridge Observatory. They were
not to be stopped by financial difficulties, so there only remained
material difficulties.

First of all they had to choose between telescopes and field-glasses.
The latter had some advantages. With equal object-glasses they have a
greater magnifying power, because the luminous rays that traverse the
glasses lose less by absorption than the reflection on the metallic
mirror of telescopes; but the thickness that can be given to glass is
limited, for too thick it does not allow the luminous rays to pass.
Besides, the construction of these vast glasses is excessively
difficult, and demands a considerable time, measured by years.

Therefore, although images are better given by glasses, an inappreciable
advantage when the question is to observe the moon, the light of which
is simply reflected they decided to employ the telescope, which is
prompter in execution and is capable of a greater magnifying power; only
as the luminous rays lose much of their intensity by traversing the
atmosphere, the Gun Club resolved to set up the instrument on one of the
highest mountains of the Union, which would diminish the depth of the
aërial strata.

In telescopes it has been seen that the glass placed at the observer's
eye produces the magnifying power, and the object-glass which bears this
power the best is the one that has the largest diameter and the greatest
focal distance. In order to magnify 48,000 times it must be much larger
than those of Herschel and Lord Rosse. There lay the difficulty, for the
casting of these mirrors is a very delicate operation.

Happily, some years before a _savant_ of the _Institut de France_, Léon
Foucault, had just invented means by which the polishing of
object-glasses became very prompt and easy by replacing the metallic
mirror by taking a piece of glass the size required and plating it.

It was to be fixed according to the method invented by Herschel for
telescopes. In the great instrument of the astronomer at Slough, the
image of objects reflected by the mirror inclined at the bottom of the
tube was formed at the other extremity where the eyeglass was placed.
Thus the observer, instead of being placed at the lower end of the tube,
was hoisted to the upper end, and there with his eyeglass he looked down
into the enormous cylinder. This combination had the advantage of doing
away with the little mirror destined to send back the image to the
ocular glass, which thus only reflected once instead of twice; therefore
there were fewer luminous rays extinguished, the image was less feeble,
and more light was obtained, a precious advantage in the observation
that was to be made.

This being resolved upon, the work was begun. According to the
calculations of the Cambridge Observatory staff, the tube of the new
reflector was to be 280 feet long and its mirror 16 feet in diameter.
Although it was so colossal it was not comparable to the telescope
10,000 feet long which the astronomer Hooke proposed to construct some
years ago. Nevertheless the setting up of such an apparatus presented
great difficulties.

The question of its site was promptly settled. It must be upon a high
mountain, and high mountains are not numerous in the States.

In fact, the orographical system of this great country only contains two
chains of average height, amongst which flows the magnificent
Mississippi, which the Americans would call the "king of rivers" if they
admitted any royalty whatever.

On the east rise the Apalachians, the very highest point of which, in
New Hampshire, does not exceed the very moderate altitude of 5,600 feet.

On the west are, however, the Rocky Mountains, that immense chain which
begins at the Straits of Magellan, follows the west coast of South
America under the name of the Andes or Cordilleras, crosses the Isthmus
of Panama, and runs up the whole of North America to the very shores of
the Polar Sea.

These mountains are not very high, and the Alps or Himalayas would look
down upon them with disdain. In fact, their highest summit is only
10,701 feet high, whilst Mont Blanc is 14,439, and the highest summit of
the Himalayas is 26,776 feet above the level of the sea.

But as the Gun Club wished that its telescope, as well as the Columbiad,
should be set up in the States of the Union, they were obliged to be
content with the Rocky Mountains, and all the necessary material was
sent to the summit of Long's Peak in the territory of Missouri.

Neither pen nor language could relate the difficulties of every kind
that the American engineers had to overcome, and the prodigies of
audacity and skill that they accomplished. Enormous stones, massive
pieces of wrought-iron, heavy corner-clamps, and huge portions of
cylinder had to be raised with an object-glass, weighing nearly 30,000
lbs., above the line of perpetual snow for more than 10,000 feet in
height, after crossing desert prairies, impenetrable forests, fearful
rapids far from all centres of population, and in the midst of savage
regions in which every detail of life becomes an insoluble problem, and,
nevertheless, American genius triumphed over all these obstacles. Less
than a year after beginning the works in the last days of the month of
September, the gigantic reflector rose in the air to a height of 280
feet. It was hung from an enormous iron scaffolding; an ingenious
arrangement allowed it to be easily moved towards every point of the
sky, and to follow the stars from one horizon to the other during their
journey across space.

It had cost more than 400,000 dollars. The first time it was pointed at
the moon the observers felt both curious and uneasy. What would they
discover in the field of this telescope which magnified objects 48,000
times? Populations, flocks of lunar animals, towns, lakes, and oceans?
No, nothing that science was not already acquainted with, and upon all
points of her disc the volcanic nature of the moon could be determined
with absolute precision.

But the telescope of the Rocky Mountains, before being used by the Gun
Club, rendered immense services to astronomy. Thanks to its power of
penetration, the depths of the sky were explored to their utmost limits,
the apparent diameter of a great number of stars could be rigorously
measured, and Mr. Clarke, of the Cambridge staff, resolved the Crab
nebula in Taurus, which Lord Rosse's reflector had never been able to
do.




CHAPTER XXV.

FINAL DETAILS.


It was the 22nd of November. The supreme departure was to take place ten
days later. One operation still remained to bring it to a happy
termination, a delicate and perilous operation exacting infinite
precautions, and against the success of which Captain Nicholl had laid
his third bet. It was, in fact, nothing less than the loading of the gun
and the introduction into it of 400,000 lbs. of gun-cotton. Nicholl had
thought, not without reason, perhaps, that the handling of so large a
quantity of pyroxyle would cause grave catastrophes, and that in any
case this eminently explosive mass would ignite of itself under the
pressure of the projectile.

There were also grave dangers increased by the carelessness of the
Americans, who, during the Federal war, used to load their cannon cigar
in mouth. But Barbicane had set his heart on succeeding, and did not
mean to founder in port; he therefore chose his best workmen, made them
work under his superintendence, and by dint of prudence and precautions
he managed to put all the chances of success on his side.

First he took care not to bring all his charge at once to the inclosure
of Stony Hill. He had it brought little by little carefully packed in
sealed cases. The 400,000 lbs. of pyroxyle had been divided into packets
of 500 lbs., which made 800 large cartridges made carefully by the
cleverest artisans of Pensacola. Each case contained ten, and they
arrived one after the other by the railroad of Tampa Town; by that means
there were never more than 500 lbs. of pyroxyle at once in the
inclosure. As soon as it arrived each case was unloaded by workmen
walking barefoot, and each cartridge transported to the orifice of the
Columbiad, into which they lowered them by means of cranes worked by the
men. Every steam-engine had been excluded, and the least fires
extinguished for two miles round. Even in November it was necessary to
preserve this gun-cotton from the ardour of the sun. So they worked at
night by light produced in a vacuum by means of Rühmkorff's apparatus,
which threw an artificial brightness into the depths of the Columbiad.
There the cartridges were arranged with the utmost regularity, fastened
together by a wire destined to communicate the electric spark to them
all simultaneously.

In fact, it was by means of electricity that fire was to be set to this
mass of gun-cotton. All these single wires, surrounded by isolating
material, were rolled into a single one at a narrow hole pierced at the
height the projectile was to be placed; there they crossed the thick
metal wall and came up to the surface by one of the vent-holes in the
masonry made on purpose. Once arrived at the summit of Stony Hill, the
wire supported on poles for a distance of two miles met a powerful pile
of Bunsen passing through a non-conducting apparatus. It would,
therefore, be enough to press with the finger the knob of the apparatus
for the electric current to be at once established, and to set fire to
the 400,000 lbs. of gun-cotton. It is hardly necessary to say that this
was only to be done at the last moment.

On the 28th of November the 800 cartridges were placed at the bottom of
the Columbiad. That part of the operation had succeeded. But what worry,
anxiety, and struggles President Barbicane had to undergo! In vain had
he forbidden entrance to Stony Hill; every day curious sightseers
climbed over the palisading, and some, pushing imprudence to folly, came
and smoked amongst the bales of gun-cotton. Barbicane put himself into
daily rages. J.T. Maston seconded him to the best of his ability,
chasing the intruders away and picking up the still-lighted cigar-ends
which the Yankees threw about--a rude task, for more than 300,000 people
pressed round the palisades. Michel Ardan had offered himself to escort
the cases to the mouth of the gun, but having caught him with a cigar in
his mouth whilst he drove out the intruders to whom he was giving this
unfortunate example, the president of the Gun Club saw that he could not
depend upon this intrepid smoker, and was obliged to have him specially
watched.

At last, there being a Providence even for artillerymen, nothing blew
up, and the loading was happily terminated. The third bet of Captain
Nicholl was therefore much imperilled. There still remained the work of
introducing the projectile into the Columbiad and placing it on the
thick bed of gun-cotton.

But before beginning this operation the objects necessary for the
journey were placed with order in the waggon-compartment. There were a
good many of them, and if they had allowed Michel Ardan to do as he
pleased he would soon have filled up all the space reserved for the
travellers. No one can imagine all that the amiable Frenchman wished to
carry to the moon--a heap of useless trifles. But Barbicane interfered,
and refused all but the strictly necessary.

Several thermometers, barometers, and telescopes were placed in the
instrument-case.

The travellers were desirous of examining the moon during their transit,
and in order to facilitate the survey of this new world they took an
excellent map by Boeer and Moedler, the _Mappa Selenographica_,
published in four plates, which is justly looked upon as a masterpiece
of patience and observation. It represented with scrupulous exactitude
the slightest details of that portion of the moon turned towards the
earth. Mountains, valleys, craters, peaks, watersheds, were depicted on
it in their exact dimensions, faithful positions, and names, from Mounts
Doerfel and Leibnitz, whose highest summits rise on the eastern side of
the disc, to the _Mare Frigoris_, which extends into the North Polar
regions.

It was, therefore, a precious document for the travellers, for they
could study the country before setting foot upon it.

They took also three rifles and three fowling-pieces with powder and
shot in great quantity.

"We do not know with whom we may have to deal," said Michel Ardan. "Both
men and beasts may be displeased at our visit; we must, therefore, take
our precautions."

The instruments of personal defence were accompanied by pickaxes,
spades, saws, and other indispensable tools, without mentioning garments
suitable to every temperature, from the cold of the polar regions to the
heat of the torrid zone.

Michel Ardan would have liked to take a certain number of animals of
different sorts, not male and female of every species, as he did not see
the necessity of acclimatising serpents, tigers, alligators, or any
other noxious beasts in the moon.

"No," said he to Barbicane, "but some useful animals, ox or cow, ass or
horse, would look well in the landscape and be of great use."

"I agree with you, my dear Ardan," answered the president of the Gun
Club; "but our projectile is not Noah's Ark. It differs both in
dimensions and object, so let us remain in the bounds of possibility."

At last after long discussions it was agreed that the travellers should
be content to take with them an excellent sporting dog belonging to
Nicholl and a vigorous Newfoundland of prodigious strength. Several
cases of the most useful seeds were included amongst the indispensable
objects. If they had allowed him, Michel Ardan would have taken several
sacks of earth to sow them in. Any way he took a dozen little trees,
which were carefully enveloped in straw and placed in a corner of the
projectile.

Then remained the important question of provisions, for they were
obliged to provide against finding the moon absolutely barren. Barbicane
managed so well that he took enough for a year. But it must be added, to
prevent astonishment, that these provisions consisted of meat and
vegetable compressed to their smallest volume by hydraulic pressure, and
included a great quantity of nutritive elements; there was not much
variety, but it would not do to be too particular in such an expedition.
There was also about fifty gallons of brandy and water for two months
only, for, according to the latest observations of astronomers, no one
doubted the presence of a large quantity of water in the moon. As to
provisions, it would have been insane to believe that the inhabitants of
the earth would not find food up there. Michel Ardan had no doubt about
it. If he had he would not have gone.

"Besides," said he one day to his friends, "we shall not be completely
abandoned by our friends on earth, and they will take care not to forget
us."

"No, certainly," answered J.T. Maston.

"What do you mean?" asked Nicholl.

"Nothing more simple," answered Ardan. "Will not our Columbiad be still
there? Well, then, every time that the moon is in favourable conditions
of zenith, if not of perigee--that is to say, about once a year--could
they not send us a projectile loaded with provisions which we should
expect by a fixed date?"

"Hurrah!" cried J.T. Maston. "That is not at all a bad idea. Certainly
we will not forget you."

"I depend upon you. Thus you see we shall have news regularly from the
globe, and for our part we shall be very awkward if we do not find means
to communicate with our good friends on earth."

These words inspired such confidence that Michel Ardan with his superb
assurance would have carried the whole Gun Club with him. What he said
seemed simple, elementary, and sure of success, and it would have been
sordid attachment to this earth to hesitate to follow the three
travellers upon their lunar expedition.

When the different objects were placed in the projectile the water was
introduced between the partitions and the gas for lighting purposes laid
in. Barbicane took enough chlorate of potash and caustic potash for two
months, as he feared unforeseen delay. An extremely ingenious machine
working automatically put the elements for good air in motion. The
projectile, therefore, was ready, and the only thing left to do was to
lower it into the gun, an operation full of perils and difficulty.

The enormous projectile was taken to the summit of Stony Hill. There
enormous cranes seized it and held it suspended over the metal well.

This was an anxious moment. If the chains were to break under the
enormous weight the fall of such a mass would inevitably ignite the
gun-cotton.

Happily nothing of the sort happened, and a few hours afterwards the
projectile-compartment rested on its pyroxyle bed, a veritable
fulminating pillow. The only effect of its pressure was to ram the
charge of the gun more strongly.

"I have lost," said the captain, handing the sum of 3,000 dollars to
President Barbicane.

Barbicane did not wish to receive this money from his travelling
companion, but he was obliged to give way to Nicholl, who wished to
fulfil all his engagements before leaving the earth.

"Then," said Michel Ardan, "there is but one thing I wish for you now,
captain."

"What is that?" asked Nicholl.

"It is that you may lose your other two wagers. By that means we shall
be sure not to be stopped on the road."




CHAPTER XXVI.

FIRE!


The 1st of December came, the fatal day, for if the projectile did not
start that very evening at 10h. 46m. and 40s. p.m., more than eighteen
years would elapse before the moon would present the same simultaneous
conditions of zenith and perigee.

The weather was magnificent; notwithstanding the approach of winter the
sun shone brightly and bathed in its radiance that earth which three of
its inhabitants were about to leave for a new world.

How many people slept badly during the night that preceded the
ardently-longed-for day! How many breasts were oppressed with the heavy
burden of waiting! All hearts beat with anxiety except only the heart of
Michel Ardan. This impassible person went and came in his usual
business-like way, but nothing in him denoted any unusual preoccupation.
His sleep had been peaceful--it was the sleep of Turenne upon a
gun-carriage the night before the battle.

From early dawn an innumerable crowd covered the prairie, which extended
as far as the eye could reach round Stony Hill. Every quarter of an hour
the railroad of Tampa brought fresh sightseers. According to the _Tampa
Town Observer_, five millions of spectators were that day upon Floridian
soil.

The greater part of this crowd had been living in tents round the
inclosure, and laid the foundations of a town which has since been
called "Ardan's Town." The ground bristled with huts, cabins, and tents,
and these ephemeral habitations sheltered a population numerous enough
to rival the largest cities of Europe.

Every nation upon earth was represented; every language was spoken at
the same time. It was like the confusion of tongues at the Tower of
Babel. There the different classes of American society mixed in absolute
equality. Bankers, cultivators, sailors, agents, merchants,
cotton-planters, and magistrates elbowed each other with primitive ease.
The creoles of Louisiana fraternised with the farmers of Indiana; the
gentlemen of Kentucky and Tennessee, the elegant and haughty Virginians,
joked with the half-savage trappers of the Lakes and the butchers of
Cincinnati. They appeared in broad-brimmed white beavers and Panamas,
blue cotton trousers, from the Opelousa manufactories, draped in elegant
blouses of écru cloth, in boots of brilliant colours, and extravagant
shirt-frills; upon shirt-fronts, cuffs, cravats, on their ten fingers,
even in their ears, an assortment of rings, pins, diamonds, chains,
buckles, and trinkets, the cost of which equalled the bad taste. Wife,
children, servants, in no less rich dress, accompanied, followed,
preceded, and surrounded their husbands, fathers, and masters, who
resembled the patriarchs amidst their innumerable families.

At meal-times it was a sight to see all these people devour the dishes
peculiar to the Southern States, and eat, with an appetite menacing to
the provisioning of Florida, the food that would be repugnant to a
European stomach, such as fricasseed frogs, monkey-flesh, fish-chowder,
underdone opossum, and raccoon steaks.

The liquors that accompanied this indigestible food were numerous.
Shouts and vociferations to buy resounded through the bar-rooms or
taverns, decorated with glasses, tankards, decanters, and bottles of
marvellous shapes, mortars for pounding sugar, and bundles of straws.

"Mint-julep!" roars out one of the salesmen.

"Claret sangaree!" shouts another through his nose.

"Gin-sling!" shouts one.

"Cocktail! Brandy-smash!" cries another.

"Who'll buy real mint-julep in the latest style?" shouted these skilful
salesmen, rapidly passing from one glass to another the sugar, lemon,
green mint, crushed ice, water, cognac, and fresh pine-apple which
compose this refreshing drink.

Generally these sounds, addressed to throats made thirsty by the spices
they consumed, mingled into one deafening roar. But on this 1st of
December these cries were rare. No one thought of eating and drinking,
and at 4 p.m. there were many spectators in the crowd who had not taken
their customary lunch! A much more significant fact, even the national
passion for gaming was allayed by the general emotion. Thimbles,
skittles, and cards were left in their wrappings, and testified that the
great event of the day absorbed all attention.

Until nightfall a dull, noiseless agitation like that which precedes
great catastrophes ran through the anxious crowd. An indescribable
uneasiness oppressed all minds, and stopped the beating of all hearts.
Every one wished it over.

However, about seven o'clock this heavy silence was suddenly broken. The
moon rose above the horizon. Several millions of hurrahs saluted her
apparition. She was punctual to the appointment. Shouts of welcome broke
from all parts, whilst the blonde Phoebe shone peacefully in a clear
sky, and caressed the enraptured crowd with her most affectionate rays.

At that moment the three intrepid travellers appeared. When they
appeared the cries redoubled in intensity. Unanimously, instantaneously,
the national song of the United States escaped from all the spectators,
and "Yankee Doodle," sung by 5,000,000 of hearty throats, rose like a
roaring tempest to the farthest limits of the atmosphere.

Then, after this irresistible outburst, the hymn was ended, the last
harmonies died away by degrees, and a silent murmur floated over the
profoundly-excited crowd.

In the meantime the Frenchman and the two Americans had stepped into the
inclosure round which the crowd was pressing. They were accompanied by
the members of the Gun Club, and deputations sent by the European
observatories. Barbicane was coolly and calmly giving his last orders.
Nicholl, with compressed lips and hands crossed behind his back, walked
with a firm and measured step. Michel Ardan, always at his ease, clothed
in a perfect travelling suit, with leather gaiters on his legs, pouch at
his side, in vast garment of maroon velvet, a cigar in his mouth,
distributed shakes of the hand with princely prodigality. He was full of
inexhaustible gaiety, laughing, joking, playing pranks upon the worthy
J.T. Maston, and was, in a word, "French," and, what is worse,
"Parisian," till the last second.

Ten o'clock struck. The moment had come to take their places in the
projectile; the necessary mechanism for the descent the door-plate to
screw down, the removal of the cranes and scaffolding hung over the
mouth of the Columbiad, took some time.

Barbicane had set his chronometer to the tenth of a second by that of
the engineer Murchison, who was entrusted with setting fire to the
powder by means of the electric spark; the travellers shut up in the
projectile could thus watch the impassive needle which was going to mark
the precise instant of their departure.

The moment for saying farewell had come. The scene was touching; in
spite of his gaiety Michel Ardan felt touched. J.T. Maston had found
under his dry eyelids an ancient tear that he had, doubtless, kept for
the occasion. He shed it upon the forehead of his dear president.

"Suppose I go too?" said he. "There is still time!"

"Impossible, old fellow," answered Barbicane.

A few moments later the three travelling companions were installed in
the projectile, and had screwed down the door-plate, and the mouth of
the Columbiad, entirely liberated, rose freely towards the sky.

Nicholl, Barbicane, and Michel Ardan were definitively walled up in
their metal vehicle.

Who could predict the universal emotion then at its paroxysm?

The moon was rising in a firmament of limpid purity, outshining on her
passage the twinkling fire of the stars; she passed over the
constellation of the Twins, and was now nearly halfway between the
horizon and the zenith.

A frightful silence hung over all that scene. There was not a breath of
wind on the earth! Not a sound of breathing from the crowd! Hearts dared
not beat. Every eye was fixed on the gaping mouth of the Columbiad.

Murchison watched the needle of his chronometer. Hardly forty seconds
had to elapse before the moment of departure struck, and each one lasted
a century!

At the twentieth there was a universal shudder, and the thought occurred
to all the crowd that the audacious travellers shut up in the vehicle
were likewise counting these terrible seconds! Some isolated cries were
heard.

"Thirty-five!--thirty-six!--thirty-seven!--thirty--eight!--thirty-nine!
--forty! Fire!!!"

Murchison immediately pressed his finger upon the electric knob and
hurled the electric spark into the depths of the Columbiad.

A fearful, unheard-of, superhuman report, of which nothing could give
an idea, not even thunder or the eruption of volcanoes, was immediately
produced. An immense spout of fire sprang up from the bowels of the
earth as if from a crater. The soil heaved and very few persons caught a
glimpse of the projectile victoriously cleaving the air amidst the
flaming smoke.




CHAPTER XXVII.

CLOUDY WEATHER.


At the moment when the pyramid of flame rose to a prodigious height in
the air it lighted up the whole of Florida, and for an incalculable
moment day was substituted for night over a considerable extent of
country. This immense column of fire was perceived for a hundred miles
out at sea, from the Gulf and from the Atlantic, and more than one
ship's captain noted the apparition of this gigantic meteor in his
log-book.

The discharge of the Columbiad was accompanied by a veritable
earthquake. Florida was shaken to its very depths. The gases of the
powder, expanded by heat, forced back the atmospheric strata with
tremendous violence, passing like a waterspout through the air.

Not one spectator remained on his legs; men, women, and children were
thrown down like ears of wheat in a storm; there was a terrible tumult,
and a large number of people were seriously injured. J.T. Maston, who
had very imprudently kept to the fore, was thrown twenty yards backwards
like a bullet over the heads of his fellow-citizens. Three hundred
thousand people were temporarily deafened and as though thunderstruck.

The atmospheric current, after throwing over huts and cabins, uprooting
trees within a radius of twenty miles, throwing the trains off the
railway as far as Tampa, burst upon the town like an avalanche and
destroyed a hundred houses, amongst others the church of St. Mary and
the new edifice of the Exchange. Some of the vessels in the port were
run against each other and sunk, and ten of them were stranded high and
dry after breaking their chains like threads of cotton.

But the circle of these devastations extended farther still, and beyond
the limits of the United States. The recoil, aided by the westerly
winds, was felt on the Atlantic at more than 300 miles from the American
shores. An unexpected tempest, which even Admiral Fitzroy could not have
foreseen, broke upon the ships with unheard-of violence. Several
vessels, seized by a sort of whirlwind before they had time to furl
their sails, were sunk, amongst others the _Childe Harold_, of
Liverpool, a regrettable catastrophe which was the object of lively
recriminations.

Lastly--although the fact is not warranted except by the affirmation of
a few natives--half-an-hour after the departure of the projectile the
inhabitants of Sierra-Leone pretended that they heard a dull noise, the
last displacement of the sonorous waves, which, after crossing the
Atlantic, died away on the African coast.

But to return to Florida. The tumult once lessened, the wounded and
deaf--in short, all the crowd--rose and shouted in a sort of frenzy,
"Hurrah for Ardan! Hurrah for Barbicane! Hurrah for Nicholl!" Several
millions of men, nose in air, armed with telescopes and every species of
field-glass, looked into space, forgetting contusions and feelings, in
order to look at the projectile. But they sought in vain; it was not to
be seen, and they resolved to await the telegrams from Long's Peak. The
director of the Cambridge Observatory, M. Belfast, was at his post in
the Rocky Mountains, and it was to this skilful and persevering
astronomer that the observations had been entrusted.

But an unforeseen phenomenon, against which nothing could be done, soon
came to put public impatience to a rude test.

The weather, so fine before, suddenly changed; the sky became covered
with clouds. It could not be otherwise after so great a displacement of
the atmospheric strata and the dispersion of the enormous quantity of
gases from the combustion of 200,000 lbs. of pyroxyle. All natural order
had been disturbed. There is nothing astonishing in that, for in
sea-fights it has been noticed that the state of the atmosphere has been
suddenly changed by the artillery discharge.

The next day the sun rose upon an horizon covered with thick clouds, a
heavy and an impenetrable curtain hung between earth and sky, and which
unfortunately extended as far as the regions of the Rocky Mountains. It
was a fatality. A concert of complaints rose from all parts of the
globe. But Nature took no notice, and as men had chosen to disturb the
atmosphere with their gun, they must submit to the consequences.

During this first day every one tried to pierce the thick veil of
clouds, but no one was rewarded for the trouble; besides, they were all
mistaken in supposing they could see it by looking up at the sky, for on
account of the diurnal movement of the globe the projectile was then, of
course, shooting past the line of the antipodes.

However that might be, when night again enveloped the earth--a dark,
impenetrable night--it was impossible to see the moon above the horizon;
it might have been thought that she was hiding on purpose from the bold
beings who had shot at her. No observation was, therefore, possible, and
the despatches from Long's Peak confirmed the disastrous intelligence.

However, if the experiment had succeeded, the travellers, who had
started on the 1st of December, at 10h. 46m. 40s. p.m., were due at
their destination on the 4th at midnight; so that as up to that time it
would, after all, have been difficult to observe a body so small, people
waited with all the patience they could muster.

On the 4th of December, from 8 p.m. till midnight, it would have been
possible to follow the trace of the projectile, which would have
appeared like a black speck on the shining disc of the moon. But the
weather remained imperturbably cloudy, and exasperated the public, who
swore at the moon for not showing herself. _Sic transit gloria mundi_!

J.T. Maston, in despair, set out for Long's Peak. He wished to make an
observation himself. He did not doubt that his friends had arrived at
the goal of their journey. No one had heard that the projectile had
fallen upon any continent or island upon earth, and J.T. Maston did not
admit for a moment that it could have fallen into any of the oceans with
which the earth is three parts covered.

On the 5th the same weather. The large telescopes of the old
world--those of Herschel, Rosse, and Foucault--were invariably fixed
upon the Queen of Night, for the weather was magnificent in Europe, but
the relative weakness of these instruments prevented any useful
observation.

On the 6th the same weather reigned. Impatience devoured three parts of
the globe. The most insane means were proposed for dissipating the
clouds accumulated in the air.

On the 7th the sky seemed to clear a little. Hopes revived but did not
last long, and in the evening thick clouds defended the starry vault
against all eyes.

Things now became grave. In fact, on the 11th, at 9.11 a.m., the moon
would enter her last quarter. After this delay she would decline every
day, and even if the sky should clear the chances of observation would
be considerably lessened--in fact, the moon would then show only a
constantly-decreasing portion of her disc, and would end by becoming
new--that is to say, she would rise and set with the sun, whose rays
would make her quite invisible. They would, therefore, be obliged to
wait till the 3rd of January, at 12.43 p.m., till she would be full
again and ready for observation.

The newspapers published these reflections with a thousand commentaries,
and did not fail to tell the public that it must arm itself with angelic
patience.

On the 8th no change. On the 9th the sun appeared for a moment, as if to
jeer at the Americans. It was received with hisses, and wounded,
doubtless, by such a reception, it was very miserly of its rays.

On the 10th no change. J.T. Maston nearly went mad, and fears were
entertained for his brain until then so well preserved in its
gutta-percha cranium.

But on the 11th one of those frightful tempests peculiar to tropical
regions was let loose in the atmosphere. Terrific east winds swept away
the clouds which had been so long there, and in the evening the
half-disc of the moon rode majestically amidst the limpid constellations
of the sky.




CHAPTER XXVIII.

A NEW STAR.


That same night the news so impatiently expected burst like a
thunderbolt over the United States of the Union, and thence darting
across the Atlantic it ran along all the telegraphic wires of the globe.
The projectile had been perceived, thanks to the gigantic reflector of
Long's Peak.

The following is the notice drawn up by the director of the Cambridge
Observatory. It resumes the scientific conclusion of the great
experiment made by the Gun Club:--

"Long's Peak, December 12th.

"To the Staff of the Cambridge Observatory.

"The projectile hurled by the Columbiad of Stony Hill was perceived by
Messrs. Belfast and J.T. Maston on the 12th of December at 8.47 p.m.,
the moon having entered her last quarter.

"The projectile has not reached its goal. It has deviated to the side,
but near enough to be detained by lunar attraction.

"There its rectilinear movement changed to a circular one of extreme
velocity, and it has been drawn round the moon in an elliptical orbit,
and has become her satellite.

"We have not yet been able to determine the elements of this new star.
Neither its speed of translation or rotation is known. The distance
which separates it from the surface of the moon may be estimated at
about 2,833 miles.

"Now two hypotheses may be taken into consideration as to a modification
in this state of things:--

"Either the attraction of the moon will end by drawing it towards her,
and the travellers will reach the goal of their journey,

"Or the projectile, maintained in an immutable orbit, will gravitate
round the lunar disc till the end of time.

"Observation will settle this point some day, but until now the
experiment of the Gun Club has had no other result than that of
providing our solar system with a new star.

"J BELFAST."

What discussions this unexpected _dénouement_ gave rise to! What a
situation full of mystery the future reserved for the investigations of
science! Thanks to the courage and devotion of three men, this
enterprise of sending a bullet to the moon, futile enough in appearance,
had just had an immense result, the consequences of which are
incalculable. The travellers imprisoned in a new satellite, if they have
not attained their end, form at least part of the lunar world; they
gravitate around the Queen of Night, and for the first time human eyes
can penetrate all her mysteries. The names of Nicholl, Barbicane, and
Michel Ardan would be for ever celebrated in astronomical annals, for
these bold explorers, desirous of widening the circle of human
knowledge, had audaciously rushed into space, and had risked their lives
in the strangest experiment of modern times.

The notice from Long's Peak once made known, there spread throughout the
universe a feeling of surprise and horror. Was it possible to go to the
aid of these bold inhabitants of the earth? Certainly not, for they had
put themselves outside of the pale of humanity by crossing the limits
imposed by the Creator on His terrestrial creatures. They could procure
themselves air for two months; they had provisions for one year; but
after? The hardest hearts palpitated at this terrible question.

One man alone would not admit that the situation was desperate. One
alone had confidence, and it was their friend--devoted, audacious, and
resolute as they--the brave J.T. Maston.

He resolved not to lose sight of them. His domicile was henceforth the
post of Long's Peak--his horizon the immense reflector. As soon as the
moon rose above the horizon he immediately framed her in the field of
his telescope; he did not lose sight of her for an instant, and
assiduously followed her across the stellar spaces; he watched with
eternal patience the passage of the projectile over her disc of silver,
and in reality the worthy man remained in perpetual communication with
his three friends, whom he did not despair of seeing again one day.

"We will correspond with them," said he to any one who would listen, "as
soon as circumstances will allow. We shall have news from them, and they
will have news from us. Besides, I know them--they are ingenious men.
Those three carry with them into space all the resources of art,
science, and industry. With those everything can be accomplished, and
you will see that they will get out of the difficulty."

(FOR SEQUEL, SEE "AROUND THE MOON.")

[Illustration: "They watched thus through the lateral windows."]

       *       *       *       *       *




ROUND THE MOON.

       *       *       *       *       *




INTRODUCTION.

PRELIMINARY CHAPTER.

CONTAINING A SHORT ACCOUNT OF THE FIRST PART OF THIS WORK TO SERVE AS
PREFACE TO THE SECOND.


During the course of the year 186---- the entire world was singularly
excited by a scientific experiment without precedent in the annals of
science. The members of the Gun Club, a circle of artillerymen
established at Baltimore after the American war, had the idea of putting
themselves in communication with the moon--yes, with the moon--by
sending a bullet to her. Their president, Barbicane, the promoter of the
enterprise, having consulted the astronomers of the Cambridge
Observatory on this subject, took all the precautions necessary for the
success of the extraordinary enterprise, declared practicable by the
majority of competent people. After having solicited a public
subscription which produced nearly 30,000,000 of francs, it began its
gigantic labours.

According to the plan drawn up by the members of the observatory, the
cannon destined to hurl the projectile was to be set up in some country
situated between the 0° and 28° of north or south latitude in order to
aim at the moon at the zenith. The bullet was to be endowed with an
initial velocity of 12,000 yards a second. Hurled on the 1st of December
at thirteen minutes and twenty seconds to eleven in the evening, it was
to get to the moon four days after its departure on the 5th of December
at midnight precisely, at the very instant she would be at her
perigee--that is to say, nearest to the earth, or at exactly 86,410
leagues' distance.

The principal members of the Gun Club, the president, Barbicane, Major
Elphinstone, the secretary, J.T. Maston, and other _savants_, held
several meetings, in which the form and composition of the bullet were
discussed, as well as the disposition and nature of the cannon, and the
quality and quantity of the powder to be employed. It was decided--1,
that the projectile should be an obus of aluminium, with a diameter of
800 inches; its sides were to be 12 inches thick, and it was to weigh
19,250 lbs.; 2, that the cannon should be a cast-iron Columbiad 900 feet
long, and should be cast at once in the ground; 3, that the charge
should consist of 400,000 lbs. of gun-cotton, which, by developing
6,000,000,000 litres of gas under the projectile, would carry it easily
towards the Queen of Night.

These questions settled, President Barbicane, aided by the engineer,
Murchison, chose a site in Florida in 27° 7' north lat. and 5° 7' west
long. It was there that after marvels of labour the Columbiad was cast
quite successfully.

Things were at that pass when an incident occurred which Increased the
interest attached to this great enterprise.

A Frenchman, a regular Parisian, an artist as witty as audacious, asked
leave to shut himself up in the bullet in order to reach the moon and
make a survey of the terrestrial satellite. This intrepid adventurer's
name was Michel Ardan. He arrived in America, was received with
enthusiasm, held meetings, was carried in triumph, reconciled President
Barbicane to his mortal enemy, Captain Nicholl, and in pledge of the
reconciliation he persuaded them to embark with him in the projectile.

The proposition was accepted. The form of the bullet was changed. It
became cylindro-conical. They furnished this species of aërial
compartment with powerful springs and breakable partitions to break the
departing shock. It was filled with provisions for one year, water for
some months, and gas for some days. An automatic apparatus made and gave
out the air necessary for the respiration of the three travellers. At
the same time the Gun Club had a gigantic telescope set up on one of the
highest summits of the Rocky Mountains, through which the projectile
could be followed during its journey through space. Everything was then
ready.

On the 30th of November, at the time fixed, amidst an extraordinary
concourse of spectators, the departure took place, and for the first
time three human beings left the terrestrial globe for the
interplanetary regions with almost the certainty of reaching their goal.

These audacious travellers, Michel Ardan, President Barbicane, and
Captain Nicholl were to accomplish their journey in ninety-seven hours
thirteen minutes and twenty seconds; consequently they could not reach
the lunar disc until the 5th of December, at midnight, at the precise
moment that the moon would be full, and not on the 4th, as some
wrongly-informed newspapers had given out.

But an unexpected circumstance occurred; the detonation produced by the
Columbiad had the immediate effect of disturbing the terrestrial
atmosphere, where an enormous quantity of vapour accumulated. This
phenomenon excited general indignation, for the moon was hidden during
several nights from the eyes of her contemplators.

The worthy J.T. Maston, the greatest friend of the three travellers, set
out for the Rocky Mountains in the company of the Honourable J. Belfast,
director of the Cambridge Observatory, and reached the station of Long's
Peak, where the telescope was set up which brought the moon, apparently,
to within two leagues. The honourable secretary of the Gun Club wished
to observe for himself the vehicle that contained his audacious friends.

The accumulation of clouds in the atmosphere prevented all observation
during the 5th, 6th, 7th, 8th, 9th, and 10th of December. It was even
thought that no observation could take place before the 3rd of January
in the following year, for the moon, entering her last quarter on the
11th, would after that not show enough of her surface to allow the trace
of the projectile to be followed.

But at last, to the general satisfaction, a strong tempest during the
night between the 11th and 12th of December cleared the atmosphere, and
the half-moon was distinctly visible on the dark background of the sky.

That same night a telegram was sent from Long's Peak Station by J.T.
Maston and Belfast to the staff of the Cambridge Observatory.

This telegram announced that on the 11th of December, at 8.47 p.m., the
projectile hurled by the Columbiad of Stony Hill had been perceived by
Messrs. Belfast and J.T. Maston, that the bullet had deviated from its
course through some unknown cause, and had not reached its goal, but had
gone near enough to be retained by lunar attraction; that its
rectilinear movement had been changed to a circular one, and that it was
describing an elliptical orbit round the moon, and had become her
satellite.

The telegram added that the elements of this new star had not yet been
calculated--in fact, three observations, taking a star in three
different positions, are necessary to determine them. Then it stated
that the distance separating the projectile from the lunar surface
"might be" estimated at about 2,833 leagues, or 4,500 miles.

It ended with the following double hypothesis:--Either the attraction of
the moon would end by carrying the day, and the travellers would reach
their goal; or the projectile, fixed in an immutable orbit, would
gravitate around the lunar disc to the end of time.

In either of these alternatives what would be the travellers' fate? It
is true they had provisions enough for some time. But even supposing
that their bold enterprise were crowned with success, how would they
return? Could they ever return? Would news of them ever reach the earth?
These questions, debated upon by the most learned writers of the time,
intensely interested the public.

A remark may here be made which ought to be meditated upon by too
impatient observers. When a _savant_ announces a purely speculative
discovery to the public he cannot act with too much prudence. No one is
obliged to discover either a comet or a satellite, and those who make a
mistake in such a case expose themselves justly to public ridicule.
Therefore it is better to wait; and that is what impatient J.T. Maston
ought to have done before sending to the world the telegram which,
according to him, contained the last communication about this
enterprise.

In fact, the telegram contained errors of two sorts, verified later:--1.
Errors of observation concerning the distance of the projectile from the
surface of the moon, for upon the date of the 11th of December it was
impossible to perceive it, and that which J.T. Maston had seen, or
thought he saw, could not be the bullet from the Columbiad. 2. A
theoretic error as to the fate of the said projectile, for making it a
satellite of the moon was an absolute contradiction of the laws of
rational mechanics.

One hypothesis only made by the astronomers of Long's Peak might be
realised, the one that foresaw the case when the travellers--if any yet
existed--should unite their efforts with the lunar attraction so as to
reach the surface of the disc.

Now these men, as intelligent as they were bold, had survived the
terrible shock at departure, and their journey in their bullet-carriage
will be related in its most dramatic as well as in its most singular
details. This account will put an end to many illusions and previsions,
but it will give a just idea of the various circumstances incidental to
such an enterprise, and will set in relief Barbicane's scientific
instincts, Nicholl's industrial resources, and the humorous audacity of
Michel Ardan.

Besides, it will prove that their worthy friend J.T. Maston was losing
his time when, bending over the gigantic telescope, he watched the
course of the moon across the planetary regions.




CHAPTER I.

FROM 10.20 P.M. TO 10.47 P.M.


When ten o'clock struck, Michel Ardan, Barbicane, and Nicholl said
good-bye to the numerous friends they left upon the earth. The two dogs,
destined to acclimatise the canine race upon the lunar continents, were
already imprisoned in the projectile. The three travellers approached
the orifice of the enormous iron tube, and a crane lowered them to the
conical covering of the bullet.

There an opening made on purpose let them down into the aluminium
vehicle. The crane's tackling was drawn up outside, and the mouth of the
Columbiad instantly cleared of its last scaffolding.

As soon as Nicholl and his companions were in the projectile he closed
the opening by means of a strong plate screwed down inside. Other
closely-fitting plates covered the lenticular glasses of the skylights.
The travellers, hermetically inclosed in their metal prison, were in
profound darkness.

"And now, my dear companions," said Michel Ardan, "let us make ourselves
at home. I am a domestic man myself, and know how to make the best of
any lodgings. First let us have a light; gas was not invented for
moles!"

Saying which the light-hearted fellow struck a match on the sole of his
boot and then applied it to the burner of the receptacle, in which there
was enough carbonised hydrogen, stored under strong pressure, for
lighting and heating the bullet for 144 hours, or six days and six
nights.

Once the gas lighted, the projectile presented the aspect of a
comfortable room with padded walls, furnished with circular divans, the
roof of which was in the shape of a dome.

The objects in it, weapons, instruments, and utensils, were solidly
fastened to the sides in order to bear the parting shock with impunity.
Every possible precaution had been taken to insure the success of so
bold an experiment.

Michel Ardan examined everything, and declared himself quite satisfied
with his quarters.

"It is a prison," said he, "but a travelling prison, and if I had the
right to put my nose to the window I would take it on a hundred years'
lease! You are smiling, Barbicane. You are thinking of something you do
not communicate. Do you say to yourself that this prison may be our
coffin? Our coffin let it be; I would not change it for Mahomet's, which
only hangs in space, and does not move!"

Whilst Michel Ardan was talking thus, Barbicane and Nicholl were making
their last preparations.

It was 10.20 p.m. by Nicholl's chronometer when the three travellers
were definitely walled up in their bullet. This chronometer was
regulated to the tenth of a second by that of the engineer, Murchison.
Barbicane looked at it.

"My friends," said he, "it is twenty minutes past ten; at thirteen
minutes to eleven Murchison will set fire to the Columbiad; at that
minute precisely we shall leave our spheroid. We have, therefore, still
seven-and-twenty minutes to remain upon earth."

"Twenty-six minutes and thirteen seconds," answered the methodical
Nicholl.

"Very well!" cried Michel Ardan good-humouredly; "in twenty-six minutes
lots of things can be done. We can discuss grave moral or political
questions, and even solve them. Twenty-six minutes well employed are
worth more than twenty-six years of doing nothing. A few seconds of a
Pascal or a Newton are more precious than the whole existence of a crowd
of imbeciles."

"And what do you conclude from that, talker eternal?" asked President
Barbicane.

"I conclude that we have twenty-six minutes," answered Ardan.

"Twenty-four only," said Nicholl.

"Twenty-four, then, if you like, brave captain," answered Ardan;
"twenty-four minutes, during which we might investigate--"

"Michel," said Barbicane, "during our journey we shall have plenty of
time to investigate the deepest questions. Now we must think of
starting."

"Are we not ready?"

"Certainly. But there are still some precautions to be taken to deaden
the first shock as much as possible!"

"Have we not water-cushions placed between movable partitions elastic
enough to protect us sufficiently?"

"I hope so, Michel," answered Barbicane gently; "but I am not quite
sure!"

"Ah, the joker!" exclaimed Michel Ardan. "He hopes! He is not quite
sure! And he waits till we are encased to make this deplorable
acknowledgment! I ask to get out."

"By what means?" asked Barbicane.

"Well!" said Michel Ardan, "it would be difficult. We are in the train,
and the guard's whistle will be heard in twenty-four minutes."

"Twenty!" ejaculated Nicholl.

The three travellers looked at one another for a few seconds. Then they
examined all the objects imprisoned with them.

"Everything is in its place," said Barbicane. "The question now is where
we can place ourselves so as best to support the departing shock. The
position we assume must be important too--we must prevent the blood
rushing too violently to our heads."

"That is true," said Nicholl.

"Then," answered Michel Ardan, always ready to suit the action to the
word, "we will stand on our heads like the clowns at the circus."

"No," said Barbicane; "but let us lie on our sides; we shall thus resist
the shock better. When the bullet starts it will not much matter whether
we are inside or in front."

"If it comes to 'not much matter' I am more reassured," answered Michel
Ardan.

"Do you approve of my idea, Nicholl?" asked Barbicane.

"Entirely," answered the captain. "Still thirteen minutes and a-half."

"Nicholl is not a man," exclaimed Michel; "he is a chronometer marking
the seconds, and with eight holes in--"

But his companions were no longer listening to him, and they were making
their last preparations with all the coolness imaginable. They looked
like two methodical travellers taking their places in the train and
making themselves as comfortable as possible. One wonders, indeed, of
what materials these American hearts are made, to which the approach of
the most frightful danger does not add a single pulsation.

Three beds, thick and solidly made, had been placed in the projectile.
Nicholl and Barbicane placed them in the centre of the disc that formed
the movable flooring. There the three travellers were to lie down a few
minutes before their departure.

In the meanwhile Ardan, who could not remain quiet, turned round his
narrow prison like a wild animal in a cage, talking to his friends and
his dogs, Diana and Satellite, to whom it will be noticed he had some
time before given these significant names.

"Up, Diana! up, Satellite!" cried he, exciting them. "You are going to
show to the Selenite dogs how well-behaved the dogs of the earth can be!
That will do honour to the canine race. If we ever come back here I will
bring back a cross-breed of 'moon-dogs' that will become all the rage."

"If there are any dogs in the moon," said Barbicane.

"There are some," affirmed Michel Ardan, "the same as there are horses,
cows, asses, and hens. I wager anything we shall find some hens."

"I bet a hundred dollars we find none," said Nicholl.

"Done, captain," answered Ardan, shaking hands with Nicholl. "But,
by-the-bye, you have lost three bets with the president, for the funds
necessary for the enterprise were provided, the casting succeeded, and
lastly, the Columbiad was loaded without accident--that makes six
thousand dollars."

"Yes," answered Nicholl. "Twenty-three minutes and six seconds to
eleven."

"I hear, captain. Well, before another quarter of an hour is over you
will have to make over another nine thousand dollars to the president,
four thousand because the Columbiad will not burst, and five thousand
because the bullet will rise higher than six miles into the air."

"I have the dollars," answered Nicholl, striking his coat pocket, "and I
only want to pay."

"Come, Nicholl, I see you are a man of order, what I never could be; but
allow me to tell you that your series of bets cannot be very
advantageous to you."

"Why?" asked Barbicane.

"Because if you win the first the Columbiad will have burst, and the
bullet with it, and Barbicane will not be there to pay you your
dollars."

"My wager is deposited in the Baltimore Bank," answered Barbicane
simply; "and in default of Nicholl it will go to his heirs."

"What practical men you are!" cried Michel Ardan. "I admire you as much
as I do not understand you."

"Eighteen minutes to eleven," said Nicholl.

"Only five minutes more," answered Barbicane.

"Yes, five short minutes!" replied Michel Ardan. "And we are shut up in
a bullet at the bottom of a cannon 900 feet long! and under this bullet
there are 400,000 lbs. of gun-cotton, worth more than 1,600,000 lbs. of
ordinary powder! And friend Murchison, with his chronometer in hand and
his eye fixed on the hand and his finger on the electric knob, is
counting the seconds to hurl us into the planetary regions."

"Enough, Michel, enough!" said Barbicane in a grave tone. "Let us
prepare ourselves. A few seconds only separate us from a supreme moment.
Your hands, my friends."

"Yes," cried Michel Ardan, more moved than he wished to appear.

The three bold companions shook hands.

"God help us!" said the religious president.

Michel Ardan and Nicholl lay down on their beds in the centre of the
floor.

"Thirteen minutes to eleven," murmured the captain.

Twenty seconds more! Barbicane rapidly put out the gas, and lay down
beside his companions.

The profound silence was only broken by the chronometer beating the
seconds.

Suddenly a frightful shock was felt, and the projectile, under the
impulsion of 6,000,000,000 litres of gas developed by the deflagration
of the pyroxyle, rose into space.




CHAPTER II.

THE FIRST HALF-HOUR.


What had happened? What was the effect of the frightful shock? Had the
ingenuity of the constructors of the projectile been attended by a happy
result? Was the effect of the shock deadened, thanks to the springs, the
four buffers, the water-cushions, and the movable partitions? Had they
triumphed over the frightful impulsion of the initial velocity of 11,000
metres a second? This was evidently the question the thousands of
witnesses of the exciting scene asked themselves. They forgot the object
of the journey, and only thought of the travellers! Suppose one of
them--J.T. Maston, for instance--had been able to get a glimpse of the
interior of the projectile, what would he have seen?

Nothing then. The obscurity was profound in the bullet. Its
cylindro-conical sides had resisted perfectly. There was not a break, a
crack, or a dint in them. The admirable projectile was not hurt by the
intense deflagration of the powders, instead of being liquefied, as it
was feared, into a shower of aluminium.

In the interior there was very little disorder on the whole. A few
objects had been violently hurled up to the roof, but the most important
did not seem to have suffered from the shock. Their fastenings were
intact.

On the movable disc, crushed down to the bottom by the smashing of the
partitions and the escape of the water, three bodies lay motionless. Did
Barbicane, Nicholl, and Michel Ardan still breathe? Was the projectile
nothing but a metal coffin carrying three corpses into space?

A few minutes after the departure of the bullet one of these bodies
moved, stretched out its arms, lifted up its head, and succeeded in
getting upon its knees. It was Michel Ardan. He felt himself, uttered a
sonorous "Hum," then said--

"Michel Ardan, complete. Now for the others!"

The courageous Frenchman wanted to get up, but he could not stand. His
head vacillated; his blood, violently sent up to his head, blinded him.
He felt like a drunken man.

"Brrr!" said he. "I feel as though I had been drinking two bottles of
Corton, only that was not so agreeable to swallow!"

Then passing his hand across his forehead several times, and rubbing his
temples, he called out in a firm voice--

"Nicholl! Barbicane!"

He waited anxiously. No answer. Not even a sigh to indicate that the
hearts of his companions still beat. He reiterated his call. Same
silence.

"The devil!" said he. "They seem as though they had fallen from the
fifth story upon their heads! Bah!" he added with the imperturbable
confidence that nothing could shake, "if a Frenchman can get upon his
knees, two Americans will have no difficulty in getting upon their feet.
But, first of all, let us have a light on the subject."

Ardan felt life come back to him in streams. His blood became calm, and
resumed its ordinary circulation. Fresh efforts restored his
equilibrium. He succeeded in getting up, took a match out of his pocket,
and struck it; then putting it to the burner he lighted the gas. The
meter was not in the least damaged. The gas had not escaped. Besides,
the smell would have betrayed it, and had this been the case, Michel
Ardan could not with impunity have lighted a match in a medium filled
with hydrogen. The gas, mixed in the air, would have produced a
detonating mixture, and an explosion would have finished what a shock
had perhaps begun.

As soon as the gas was lighted Ardan bent down over his two companions.
Their bodies were thrown one upon the other, Nicholl on the top,
Barbicane underneath.

Ardan raised the captain, propped him up against a divan, and rubbed him
vigorously. This friction, administered skilfully, reanimated Nicholl,
who opened his eyes, instantly recovered his presence of mind, seized
Ardan's hand, and then looking round him--

"And Barbicane?" he asked.

"Each in turn," answered Michel Ardan tranquilly. "I began with you,
Nicholl, because you were on the top. Now I'll go to Barbicane."

That said, Ardan and Nicholl raised the president of the Gun Club and
put him on a divan. Barbicane seemed to have suffered more than his
companions. He was bleeding, but Nicholl was glad to find that the
hemorrhage only came from a slight wound in his shoulder. It was a
simple scratch, which he carefully closed.

Nevertheless, Barbicane was some time before he came to himself, which
frightened his two friends, who did not spare their friction.

"He is breathing, however," said Nicholl, putting his ear to the breast
of the wounded man.

"Yes," answered Ardan, "he is breathing like a man who is in the habit
of doing it daily. Rub, Nicholl, rub with all your might."

And the two improvised practitioners set to work with such a will and
managed so well that Barbicane at last came to his senses. He opened his
eyes, sat up, took the hands of his two friends, and his first words
were--

"Nicholl, are we going on?"

Nicholl and Ardan looked at one another. They had not yet thought about
the projectile. Their first anxiety had been for the travellers, not for
the vehicle.

"Well, really, are we going on?" repeated Michel Ardan.

"Or are we tranquilly resting on the soil of Florida?" asked Nicholl.

"Or at the bottom of the Gulf of Mexico?" added Michel Ardan.

"Impossible!" cried President Barbicane.

This double hypothesis suggested by his two friends immediately recalled
him to life and energy.

They could not yet decide the question. The apparent immovability of the
bullet and the want of communication with the exterior prevented them
finding it out. Perhaps the projectile was falling through space.
Perhaps after rising a short distance it had fallen upon the earth, or
even into the Gulf of Mexico, a fall which the narrowness of the
Floridian peninsula rendered possible.

The case was grave, the problem interesting. It was necessary to solve
it as soon as possible. Barbicane, excited, and by his moral energy
triumphing over his physical weakness, stood up and listened. A profound
silence reigned outside. But the thick padding was sufficient to shut
out all the noises on earth; However, one circumstance struck
Barbicane. The temperature in the interior of the projectile was
singularly high. The president drew out a thermometer from the envelope
that protected it and consulted it. The instrument showed 81° Fahr.

"Yes!" he then exclaimed--"yes, we are moving! This stifling heat oozes
through the sides of our projectile. It is produced by friction against
the atmosphere. It will soon diminish; because we are already moving in
space, and after being almost suffocated we shall endure intense cold."

"What!" asked Michel Ardan, "do you mean to say that we are already
beyond the terrestrial atmosphere?"

"Without the slightest doubt, Michel. Listen to me. It now wants but
five minutes to eleven. It is already eight minutes since we started.
Now, if our initial velocity has not been diminished by friction, six
seconds would be enough for us to pass the sixteen leagues of atmosphere
which surround our spheroid."

"Just so," answered Nicholl; "but in what proportion do you reckon the
diminution of speed by friction?"

"In the proportion of one-third," answered Barbicane. "This diminution
is considerable, but it is so much according to my calculations. If,
therefore, we have had an initial velocity of 11,000 metres, when we get
past the atmosphere it will be reduced to 7,332 metres. However that may
be, we have already cleared that space, and--"

"And then," said Michel Ardan, "friend Nicholl has lost his two
bets--four thousand dollars because the Columbiad has not burst, five
thousand dollars because the projectile has risen to a greater height
than six miles; therefore, Nicholl, shell out."

"We must prove it first," answered the captain, "and pay afterwards. It
is quite possible that Barbicane's calculations are exact, and that I
have lost my nine thousand dollars. But another hypothesis has come into
my mind, and it may cancel the wager."

"What is that?" asked Barbicane quickly.

"The supposition that for some reason or other the powder did not catch
fire, and we have not started."

"Good heavens! captain," cried Michel Ardan, "that is a supposition
worthy of me! It is not serious! Have we not been half stunned by the
shock? Did I not bring you back to life? Does not the president's
shoulder still bleed from the blow?"

"Agreed, Michel," replied Nicholl, "but allow me to ask one question."

"Ask it, captain."

"Did you hear the detonation, which must certainly have been
formidable?"

"No," answered Ardan, much surprised, "I certainly did not hear it."

"And you, Barbicane?"

"I did not either."

"What do you make of that?" asked Nicholl.

"What indeed!" murmured the president; "why did we not hear the
detonation?"

The three friends looked at one another rather disconcertedly. Here was
an inexplicable phenomenon. The projectile had been fired, however, and
there must have been a detonation.

"We must know first where we are," said Barbicane, "so let us open the
panel."

This simple operation was immediately accomplished. The screws that
fastened the bolts on the outer plates of the right-hand skylight
yielded to the coach-wrench. These bolts were driven outside, and
obturators wadded with indiarubber corked up the hole that let them
through. The exterior plate immediately fell back upon its hinges like a
port-hole, and the lenticular glass that covered the hole appeared. An
identical light-port had been made in the other side of the projectile,
another in the dome, and a fourth in the bottom. The firmament could
therefore be observed in four opposite directions--the firmament through
the lateral windows, and the earth or the moon more directly through the
upper or lower opening of the bullet.

Barbicane and his companions immediately rushed to the uncovered
port-hole. No ray of light illuminated it. Profound darkness surrounded
the projectile. This darkness did not prevent Barbicane exclaiming--

"No, my friends, we have not fallen on the earth again! No, we are not
immersed at the bottom of the Gulf of Mexico! Yes, we are going up
through space! Look at those stars that are shining in the darkness, and
the impenetrable darkness that lies between the earth and us!"

"Hurrah! hurrah!" cried Michel Ardan and Nicholl with one voice.

In fact, the thick darkness proved that the projectile had left the
earth, for the ground, then brilliantly lighted by the moon, would have
appeared before the eyes of the travellers if they had been resting upon
it. This darkness proved also that the projectile had passed beyond the
atmosphere, for the diffused light in the air would have been reflected
on the metallic sides of the projectile, which reflection was also
wanting. This light would have shone upon the glass of the light-port,
and that glass was in darkness. Doubt was no longer possible. The
travellers had quitted the earth.

"I have lost." said Nicholl.

"I congratulate you upon it," answered Ardan.

"Here are nine thousand dollars," said the captain, taking a bundle of
notes out of his pocket.

"Will you have a receipt?" asked Barbicane as he took the money.

"If you do not mind," answered Nicholl; "it is more regular."

And as seriously and phlegmatically as if he had been in his
counting-house, President Barbicane drew out his memorandum-book and
tore out a clear page, wrote a receipt in pencil, dated it, signed it,
and gave it to the captain, who put it carefully into his pocket-book.

Michel Ardan took off his hat and bowed to his two companions without
speaking a word. Such formality under such circumstances took away his
power of speech. He had never seen anything so American.

Once their business over, Barbicane and Nicholl went back to the
light-port and looked at the constellations. The stars stood out clearly
upon the dark background of the sky. But from this side the moon could
not be seen, as she moves from east to west, rising gradually to the
zenith. Her absence made Ardan say--

"And the moon? Is she going to fail us?"

"Do not frighten yourself," answered Barbicane, "Our spheroid is at her
post, but we cannot see her from this side. We must open the opposite
light-port."

At the very moment when Barbicane was going to abandon one window to set
clear the opposite one, his attention was attracted by the approach of a
shining object. It was an enormous disc the colossal dimensions of which
could not be estimated. Its face turned towards the earth was
brilliantly lighted. It looked like a small moon reflecting the light of
the large one. It advanced at prodigious speed, and seemed to describe
round the earth an orbit right across the passage of the projectile. To
the movement of translation of this object was added a movement of
rotation upon itself. It was therefore behaving like all celestial
bodies abandoned in space.

"Eh!" cried Michel Ardan. "Whatever is that? Another projectile?"

Barbicane did not answer. The apparition of this enormous body surprised
him and made him uneasy. A collision was possible which would have had
deplorable results, either by making the projectile deviate from its
route and fall back upon the earth, or be caught up by the attractive
power of the asteroid.

President Barbicane had rapidly seized the consequences of these three
hypotheses, which in one way or other would fatally prevent the success
of his attempt. His companions were silently watching the object, which
grew prodigiously larger as it approached, and through a certain optical
illusion it seemed as if the projectile were rushing upon it.

"Ye gods!" cried Michel Ardan; "there will be a collision on the line!"

The three travellers instinctively drew back. Their terror was extreme,
but it did not last long, hardly a few seconds. The asteroid passed at a
distance of a few hundred yards from the projectile and disappeared, not
so much on account of the rapidity of its course, but because its side
opposite to the moon was suddenly confounded with the absolute darkness
of space.

"A good journey to you!" cried Michel Ardan, uttering a sigh of
satisfaction. "Is not infinitude large enough to allow a poor little
bullet to go about without fear? What was that pretentious globe which
nearly knocked against us?"

"I know!" answered Barbicane.

"Of course! you know everything."

"It is a simple asteroid," said Barbicane; "but so large that the
attraction of the earth has kept it in the state of a satellite."

"Is it possible!" exclaimed Michel Ardan. "Then the earth has two moons
like Neptune?"

"Yes, my friend, two moons, though she is generally supposed to have but
one. But this second moon is so small and her speed so great that the
inhabitants of the earth cannot perceive her. It was by taking into
account certain perturbations that a French astronomer, M. Petit, was
able to determine the existence of this second satellite and calculate
its elements. According to his observations, this asteroid accomplishes
its revolution round the earth in three hours and twenty minutes only.
That implies prodigious speed."

"Do all astronomers admit the existence of this satellite?" asked
Nicholl.

"No," answered Barbicane; "but if they had met it like we have they
could not doubt any longer. By-the-bye, this asteroid, which would have
much embarrassed us had it knocked against us, allows us to determine
our position in space."

"How?" said Ardan.

"Because its distance is known, and where we met it we were exactly at
8,140 kilometres from the surface of the terrestrial globe."

"More than 2,000 leagues!" cried Michel Ardan. "That beats the express
trains of the pitiable globe called the earth!"

"I should think it did," answered Nicholl, consulting his
chronometer; "it is eleven o'clock, only thirteen minutes since we
left the American continent."

"Only thirteen minutes?" said Barbicane.

"That is all," answered Nicholl; "and if our initial velocity were
constant we should make nearly 10,000 leagues an hour."

"That is all very well, my friends," said the president; "but one
insoluble question still remains--why did we not hear the detonation of
the Columbiad?"

For want of an answer the conversation stopped, and Barbicane, still
reflecting, occupied himself with lowering the covering of the second
lateral light-port. His operation succeeded, and through the glass the
moon filled the interior of the projectile with brilliant light.
Nicholl, like an economical man, put out the gas that was thus rendered
useless, and the brilliance of which obstructed the observation of
planetary space.

The lunar disc then shone with incomparable purity. Her rays, no longer
filtered by the vapoury atmosphere of the terrestrial globe, shone
clearly through the glass and saturated the interior air of the
projectile with silvery reflections. The black curtain of the firmament
really doubled the brilliancy of the moon, which in this void of ether
unfavourable to diffusion did not eclipse the neighbouring stars. The
sky, thus seen, presented quite a different aspect--one that no human
eye could imagine.

It will be readily understood with what interest these audacious men
contemplated the moon, the supreme goal of their journey. The earth's
satellite, in her movement of translation, insensibly neared the zenith,
a mathematical point which she was to reach about ninety-six hours
later. Her mountains and plains, or any object in relief, were not seen
more plainly than from the earth; but her light across the void was
developed with incomparable intensity. The disc shone like a platinum
mirror. The travellers had already forgotten all about the earth which
was flying beneath their feet.

It was Captain Nicholl who first drew attention to the vanished globe.

"Yes!" answered Michel Ardan. "We must not be ungrateful to it. As we
are leaving our country let our last looks reach it. I want to see the
earth before it disappears completely from our eyes!"

Barbicane, to satisfy the desires of his companion, occupied himself
with clearing the window at the bottom of the projectile, the one
through which they could observe the earth directly. The movable floor
which the force of projection had sent to the bottom was taken to
pieces, not without difficulty; its pieces, carefully placed against the
sides, might still be of use. Then appeared a circular bay window, half
a yard wide, cut in the lower part of the bullet. It was filled with
glass five inches thick, strengthened with brass settings. Under it was
an aluminium plate, held down by bolts. The screws taken out and the
bolts withdrawn, the plate fell back, and visual communication was
established between interior and exterior.

Michel Ardan knelt upon the glass. It was dark, and seemed opaque.

"Well," cried he, "but where's the earth?"

"There it is," said Barbicane.

"What!" cried Ardan, "that thin streak, that silvery crescent?"

"Certainly, Michel. In four days' time, when the moon is full, at the
very minute we shall reach her, the earth will be new. She will only
appear to us under the form of a slender crescent, which will soon
disappear, and then she will be buried for some days in impenetrable
darkness."

"That the earth!" repeated Michel Ardan, staring at the thin slice of
his natal planet.

The explanation given by President Barbicane was correct. The earth,
looked at from the projectile, was entering her last quarter. She was in
her octant, and her crescent was clearly outlined on the dark background
of the sky. Her light, made bluish by the thickness of her atmosphere,
was less intense than that of the lunar crescent. This crescent then
showed itself under considerable dimensions. It looked like an enormous
arch stretched across the firmament. Some points, more vividly lighted,
especially in its concave part, announced the presence of high
mountains; but they disappeared sometimes under black spots, which are
never seen on the surface of the lunar disc. They were rings of clouds
placed concentrically round the terrestrial spheroid.

However, by dint of a natural phenomenon, identical with that produced
on the moon when she is in her octants, the contour of the terrestrial
globe could be traced. Its entire disc appeared slightly visible through
an effect of pale light, less appreciable than that of the moon. The
reason of this lessened intensity is easy to understand. When this
reflection is produced on the moon it is caused by the solar rays which
the earth reflects upon her satellite. Here it was caused by the solar
rays reflected from the moon upon the earth. Now terrestrial light is
thirteen times more intense than lunar light on account of the
difference of volume in the two bodies. Hence it follows that in the
phenomenon of the pale light the dark part of the earth's disc is less
clearly outlined than that of the moon's disc, because the intensity of
the phenomenon is in proportion to the lighting power of the two stars.
It must be added that the terrestrial crescent seems to form a more
elongated curve than that of the disc--a pure effect of irradiation.

Whilst the travellers were trying to pierce the profound darkness of
space, a brilliant shower of falling stars shone before their eyes.
Hundreds of meteors, inflamed by contact with the atmosphere, streaked
the darkness with luminous trails, and lined the cloudy part of the disc
with their fire. At that epoch the earth was in her perihelion, and the
month of December is so propitious to these shooting stars that
astronomers have counted as many as 24,000 an hour. But Michel Ardan,
disdaining scientific reasoning, preferred to believe that the earth was
saluting with her finest fireworks the departure of her three children.

This was all they saw of the globe lost in the darkness, an inferior
star of the solar world, which for the grand planets rises or sets as a
simple morning or evening star! Imperceptible point in space, it was now
only a fugitive crescent, this globe where they had left all their
affections.

For a long time the three friends, not speaking, yet united in heart,
watched while the projectile went on with uniformly decreasing velocity.
Then irresistible sleep took possession of them. Was it fatigue of body
and mind? Doubtless, for after the excitement of the last hours passed
upon earth, reaction must inevitably set in.

"Well," said Michel, "as we must sleep, let us go to sleep."

Stretched upon their beds, all three were soon buried in profound
slumber.

But they had not been unconscious for more than a quarter of an hour
when Barbicane suddenly rose, and, waking his companions, in a loud
voice cried--

"I've found it!"

"What have you found?" asked Michel Ardan, jumping out of bed.

"The reason we did not hear the detonation of the Columbiad!"

"Well?" said Nicholl.

"It was because our projectile went quicker than sound."




CHAPTER III.

TAKING POSSESSION.


This curious but certainly correct explanation once given, the three
friends fell again into a profound sleep. Where would they have found a
calmer or more peaceful place to sleep in? Upon earth, houses in the
town or cottages in the country feel every shock upon the surface of the
globe. At sea, ships, rocked by the waves, are in perpetual movement. In
the air, balloons incessantly oscillate upon the fluid strata of
different densities. This projectile alone, travelling in absolute void
amidst absolute silence, offered absolute repose to its inhabitants.

The sleep of the three adventurers would have, perhaps, been
indefinitely prolonged if an unexpected noise had not awakened them
about 7 a.m. on the 2nd of December, eight hours after their departure.

This noise was a very distinct bark.

"The dogs! It is the dogs!" cried Michel Ardan, getting up immediately.

"They are hungry," said Nicholl.

"I should think so," answered Michel; "we have forgotten them."

"Where are they?" asked Barbicane.

One of the animals was found cowering under the divan. Terrified and
stunned by the first shock, it had remained in a corner until the moment
it had recovered its voice along with the feeling of hunger.

It was Diana, still rather sheepish, that came from the retreat, not
without urging. Michel Ardan encouraged her with his most gracious
words.

"Come, Diana," he said--"come, my child; your destiny will be noted in
cynegetic annals! Pagans would have made you companion to the god
Anubis, and Christians friend to St. Roch! You are worthy of being
carved in bronze for the king of hell, like the puppy that Jupiter gave
beautiful Europa as the price of a kiss! Your celebrity will efface that
of the Montargis and St. Bernard heroes. You are rushing through
interplanetary space, and will, perhaps, be the Eve of Selenite dogs!
You will justify up there Toussenel's saying, 'In the beginning God
created man, and seeing how weak he was, gave him the dog!' Come, Diana,
come here!"

Diana, whether flattered or not, came out slowly, uttering plaintive
moans.

"Good!" said Barbicane. "I see Eve, but where is Adam?"

"Adam," answered Michel Ardan, "can't be far off. He is here somewhere.
He must be called! Satellite! here, Satellite!"

But Satellite did not appear. Diana continued moaning. It was decided,
however, that she was not wounded, and an appetising dish was set before
her to stop her complaining.

As to Satellite, he seemed lost. They were obliged to search a long time
before discovering him in one of the upper compartments of the
projectile, where a rather inexplicable rebound had hurled him
violently. The poor animal was in a pitiable condition.

"The devil!" said Michel. "Our acclimatisation is in danger!"

The unfortunate dog was carefully lowered. His head had been fractured
against the roof, and it seemed difficult for him to survive such a
shock. Nevertheless, he was comfortably stretched on a cushion, where he
sighed once.

"We will take care of you," said Michel; "we are responsible for your
existence. I would rather lose an arm than a paw of my poor Satellite."

So saying he offered some water to the wounded animal, who drank it
greedily.

These attentions bestowed, the travellers attentively watched the earth
and the moon. The earth only appeared like a pale disc terminated by a
crescent smaller than that of the previous evening, but its volume
compared with that of the moon, which was gradually forming a perfect
circle, remained enormous.

"_Parbleu_!" then said Michel Ardan; "I am really sorry we did not start
when the earth was at her full--that is to say, when our globe was in
opposition to the sun!"

"Why?" asked Nicholl.

"Because we should have seen our continents and seas under a new
aspect--the continents shining under the solar rays, the seas darker,
like they figure upon certain maps of the world! I should like to have
seen those poles of the earth upon which the eye of man has never yet
rested!"

"I daresay," answered Barbicane, "but if the earth had been full the
moon would have been new--that is to say, invisible amidst the
irradiation of the sun. It is better for us to see the goal we want to
reach than the place we started from."

"You are right, Barbicane," answered Captain Nicholl; "and besides, when
we have reached the moon we shall have plenty of time during the long
lunar nights to consider at leisure the globe that harbours men like
us."

"Men like us!" cried Michel Ardan. "But now they are not more like us
than the Selenites. We are inhabitants of a new world peopled by us
alone--the projectile! I am a man like Barbicane, and Barbicane is a man
like Nicholl. Beyond us and outside of us humanity ends, and we are the
only population of this microcosm until the moment we become simple
Selenites."

"In about eighty-eight hours," replied the captain.

"Which means?" asked Michel Ardan.

"That it is half-past eight," answered Nicholl.

"Very well," answered Michel, "I fail to find the shadow of a reason why
we should not breakfast _illico_."

In fact, the inhabitants of the new star could not live in it without
eating, and their stomachs then submitted to the imperious laws of
hunger. Michel Ardan, in his quality of Frenchman, declared himself
chief cook, an important function that no one disputed with him. The gas
gave the necessary degrees of heat for cooking purposes, and the
provision-locker furnished the elements of this first banquet.

The breakfast began with three cups of excellent broth, due to the
liquefaction in hot water of three precious Liebig tablets, prepared
from the choicest morsels of the Pampas ruminants. Some slices of
beefsteak succeeded them, compressed by the hydraulic press, as tender
and succulent as if they had just come from the butchers of the Paris
Café Anglais. Michel, an imaginative man, would have it they were even
rosy.

Preserved vegetables, "fresher than the natural ones," as the amiable
Michel observed, succeeded the meat, and were followed by some cups of
tea and slices of bread and butter, American fashion. This beverage,
pronounced excellent, was made from tea of the first quality, of which
the Emperor of Russia had put some cases at the disposition of the
travellers.

Lastly, as a worthy ending to the meal, Ardan ferreted out a fine bottle
of "Nuits" burgundy that "happened" to be in the provision compartment.
The three friends drank it to the union of the earth and her satellite.

And as if the generous wine it had distilled upon the hill-sides of
Burgundy were not enough, the sun was determined to help in the feast.
The projectile at that moment emerged from the cone of shadow cast by
the terrestrial globe, and the sun's rays fell directly upon the lower
disc of the bullet, on account of the angle which the orbit of the moon
makes with that of the earth.

"The sun!" exclaimed Michel Ardan.

"Of course," answered Barbicane; "I expected it."

"But," said Michel, "the cone of shadow thrown by the earth into space
extends beyond the moon."

"Much beyond if you do not take the atmospheric refraction into
account," said Barbicane. "But when the moon is enveloped in that shadow
the centres of the three heavenly bodies--the sun, the earth, and the
moon--are in a straight line. Then the nodes coincide with the full moon
and there is an eclipse. If, therefore, we had started during an eclipse
of the moon all our journey would have been accomplished in the dark,
which would have been a pity."

"Why?"

"Because, although we are journeying in the void, our projectile, bathed
in the solar rays, will gather their light and heat; therefore there
will be economy of gas, a precious economy in every way."

In fact, under these rays, the temperature and brilliancy of which there
was no atmosphere to soften, the projectile was lighted and warmed as if
it had suddenly passed from winter to summer. The moon above and the sun
below inundated it with their rays.

"It is pleasant here now," said Nicholl.

"I believe you!" cried Michel Ardan. "With a little vegetable soil
spread over our aluminium planet we could grow green peas in twenty-four
hours. I have only one fear, that is that the walls of our bullet will
melt."

"You need not alarm yourself, my worthy friend," answered Barbicane.
"The projectile supported a much higher temperature while it was
travelling through the atmosphere. I should not even wonder if it looked
to the eyes of the spectators like a fiery meteor."

"Then J.T. Maston must think we are roasted!"

"What I am astonished at," answered Barbicane, "is that we are not. It
was a danger we did not foresee."

"I feared it," answered Nicholl simply.

"And you did not say anything about it, sublime captain!" cried Michel
Ardan, shaking his companion's hand.

In the meantime Barbicane was making his arrangements in the projectile
as though he was never going to leave it. It will be remembered that the
base of the aërial vehicle was fifty-four feet square. It was twelve
feet high, and admirably fitted up in the interior. It was not much
encumbered by the instruments and travelling utensils, which were all in
special places, and it left some liberty of movement to its three
inhabitants. The thick glass let into a part of the floor could bear
considerable weight with impunity. Barbicane and his companions walked
upon it as well as upon a solid floor; but the sun, which struck it
directly with its rays, lighting the interior of the projectile from
below, produced singular effects of light.

They began by examining the state of the water and provision
receptacles. They were not in the least damaged, thanks to the
precautions taken to deaden the shock. The provisions were abundant, and
sufficient for one year's food. Barbicane took this precaution in case
the projectile should arrive upon an absolutely barren part of the moon.
There was only enough water and brandy for two months. But according to
the latest observations of astronomers, the moon had a dense low and
thick atmosphere, at least in its deepest valleys, and there streams and
watercourses could not fail. Therefore the adventurous explorers would
not suffer from hunger or thirst during the journey, and the first year
of their installation upon the lunar continent.

The question of air in the interior of the projectile also offered all
security. The Reiset and Regnault apparatus, destined to produce oxygen,
was furnished with enough chlorate of potash for two months. It
necessarily consumed a large quantity of gas, for it was obliged to keep
the productive matter up to 100°. But there was abundance of that also.
The apparatus wanted little looking after. It worked automatically. At
that high temperature the chlorate of potash changed into chlorine of
potassium, and gave out all the oxygen it contained. The eighteen pounds
of chlorate of potash gave out the seven pounds of oxygen necessary for
the daily consumption of the three travellers.

But it was not enough to renew the oxygen consumed; the carbonic acid
gas produced by expiration must also be absorbed. Now for the last
twelve hours the atmosphere of the bullet had become loaded with this
deleterious gas, the product of the combustion of the elements of blood
by the oxygen taken into the lungs. Nicholl perceived this state of the
air by seeing Diana palpitate painfully. In fact, carbonic acid
gas--through a phenomenon identical with the one to be noticed in the
famous Dog's Grotto--accumulated at the bottom of the projectile by
reason of its weight. Poor Diana, whose head was low down, therefore
necessarily suffered from it before her masters. But Captain Nicholl
made haste to remedy this state of things. He placed on the floor of the
projectile several receptacles containing caustic potash which he shook
about for some time, and this matter, which is very greedy of carbonic
acid, completely absorbed it, and thus purified the interior air.

An inventory of the instruments was then begun. The thermometers and
barometers were undamaged, with the exception of a minimum thermometer
the glass of which was broken. An excellent aneroid was taken out of
its padded box and hung upon the wall. Of course it was only acted upon
by and indicated the pressure of the air inside the projectile; but it
also indicated the quantity of moisture it contained. At that moment its
needle oscillated between 25.24 and 25.08. It was at "set fair."

Barbicane had brought several compasses, which were found intact. It
will be easily understood that under those circumstances their needles
were acting at random, without any constant direction. In fact, at the
distance the projectile was from the earth the magnetic pole could not
exercise any sensible action upon the apparatus. But these compasses,
taken upon the lunar disc, might show particular phenomena. In any case
it would be interesting to verify whether the earth's satellite, like
the earth herself, submitted to magnetical influence.

A hypsometer to measure the altitude of the lunar mountains, a sextant
to take the height of the sun, a theodolite, an instrument for
surveying, telescopes to be used as the moon approached--all these
instruments were carefully inspected and found in good condition,
notwithstanding the violence of the initial shock.

As to the utensils--pickaxes, spades, and different tools--of which
Nicholl had made a special collection, the sacks of various kinds of
grain, and the shrubs which Michel Ardan counted upon transplanting into
Selenite soil, they were in their places in the upper corners of the
projectile. There was made a sort of granary, which the prodigal
Frenchman had filled. What was in it was very little known, and the
merry fellow did not enlighten anybody. From time to time he climbed up
the cramp-irons riveted in the walls to this store-room, the inspection
of which he had reserved to himself. He arranged and re-arranged,
plunged his hand rapidly into certain mysterious boxes, singing all the
time in a voice very out of tune some old French song to enliven the
situation.

Barbicane noticed with interest that his rockets and other fireworks
were not damaged. These were important, for, powerfully loaded, they
were meant to slacken the speed with which the projectile would, when
attracted by the moon after passing the point of neutral attraction,
fall upon her surface. This fall besides would be six times less rapid
than it would have been upon the surface of the earth, thanks to the
difference of volume in the two bodies.

The inspection ended, therefore, in general satisfaction. Then they all
returned to their posts of observation at the lateral and lower
port-lights.

The same spectacle was spread before them. All the extent of the
celestial sphere swarmed with stars and constellations of marvellous
brilliancy, enough to make an astronomer wild! On one side the sun, like
the mouth of a fiery furnace, shone upon the dark background of the
heavens. On the other side the moon, reflecting back his fires, seemed
motionless amidst the starry world. Then a large spot, like a hole in
the firmament, bordered still by a slight thread of silver--it was the
earth. Here and there nebulous masses like large snow-flakes, and from
zenith to nadir an immense ring, formed of an impalpable dust of
stars--that milky way amidst which the sun only counts as a star of the
fourth magnitude!

The spectators could not take their eyes off a spectacle so new, of
which no description could give any idea. What reflections it suggested!
What unknown emotions it aroused in the soul! Barbicane wished to begin
the recital of his journey under the empire of these impressions, and he
noted down hourly all the events that signalised the beginning of his
enterprise. He wrote tranquilly in his large and rather
commercial-looking handwriting.

During that time the calculating Nicholl looked over the formulae of
trajectories, and worked away at figures with unparalleled dexterity.
Michel Ardan talked sometimes to Barbicane, who did not answer much, to
Nicholl, who did not hear, and to Diana, who did not understand his
theories, and lastly to himself, making questions and answers, going and
coming, occupying himself with a thousand details, sometimes leaning
over the lower port-light, sometimes roosting in the heights of the
projectile, singing all the time. In this microcosm he represented the
French agitation and loquacity, and it was worthily represented.

The day, or rather--for the expression is not correct--the lapse of
twelve hours which makes a day upon earth--was ended by a copious supper
carefully prepared. No incident of a nature to shake the confidence of
the travellers had happened, so, full of hope and already sure of
success, they went to sleep peacefully, whilst the projectile, at a
uniformly increasing speed, made its way in the heavens.




CHAPTER IV.

A LITTLE ALGEBRA.


The night passed without incident. Correctly speaking, the word "night"
is an improper one. The position of the projectile in regard to the sun
did not change. Astronomically it was day on the bottom of the bullet,
and night on the top. When, therefore, in this recital these two words
are used they express the lapse of time between the rising and setting
of the sun upon earth.

The travellers' sleep was so much the more peaceful because,
notwithstanding its excessive speed, the projectile seemed absolutely
motionless. No movement indicated its journey through space. However
rapidly change of place may be effected, it cannot produce any sensible
effect upon the organism when it takes place in the void, or when the
mass of air circulates along with the travelling body. What inhabitant
of the earth perceives the speed which carries him along at the rate of
68,000 miles an hour? Movement under such circumstances is not felt more
than repose. Every object is indifferent to it. When a body is in repose
it remains so until some foreign force puts it in movement. When in
movement it would never stop if some obstacle were not in its road. This
indifference to movement or repose is inertia.

Barbicane and his companions could, therefore, imagine themselves
absolutely motionless, shut up in the interior of the projectile. The
effect would have been the same if they had placed themselves on the
outside. Without the moon, which grew larger above them, and the earth
that grew smaller below, they would have sworn they were suspended in a
complete stagnation.

That morning, the 3rd of December, they were awakened by a joyful but
unexpected noise. It was the crowing of a cock in the interior of their
vehicle.

Michel Ardan was the first to get up; he climbed to the top of the
projectile and closed a partly-open case.

"Be quiet," said he in a whisper. "That animal will spoil my plan!"

In the meantime Nicholl and Barbicane awoke.

"Was that a cock?" said Nicholl.

"No, my friends," answered Michel quickly. "I wished to awake you with
that rural sound."

So saying he gave vent to a cock-a-doodle-do which would have done
honour to the proudest of gallinaceans.

The two Americans could not help laughing.

"A fine accomplishment that," said Nicholl, looking suspiciously at his
companion.

"Yes," answered Michel, "a joke common in my country. It is very Gallic.
We perpetrate it in the best society."

Then turning the conversation--

"Barbicane, do you know what I have been thinking about all night?"

"No," answered the president.

"About our friends at Cambridge. You have already remarked how
admirably ignorant I am of mathematics. I find it, therefore, impossible
to guess how our _savants_ of the observatory could calculate what
initial velocity the projectile ought to be endowed with on leaving the
Columbiad in order to reach the moon."

"You mean," replied Barbicane, "in order to reach that neutral point
where the terrestrial and lunar attractions are equal; for beyond this
point, situated at about 0.9 of the distance, the projectile will fall
upon the moon by virtue of its own weight merely."

"Very well," answered Michel; "but once more; how did they calculate the
initial velocity?"

"Nothing is easier," said Barbicane.

"And could you have made the calculation yourself?" asked Michel Ardan.

"Certainly; Nicholl and I could have determined it if the notice from
the observatory had not saved us the trouble."

"Well, old fellow," answered Michel, "they might sooner cut off my head,
beginning with my feet, than have made me solve that problem!"

"Because you do not know algebra," replied Barbicane tranquilly.

"Ah, that's just like you dealers in _x_! You think you have explained
everything when you have said 'algebra.'"

"Michel," replied Barbicane, "do you think it possible to forge without
a hammer, or to plough without a ploughshare?"

"It would be difficult."

"Well, then, algebra is a tool like a plough or a hammer, and a good
tool for any one who knows how to use it."

"Seriously?"

"Quite."

"Could you use that tool before me?"

"If it would interest you."

"And could you show me how they calculated the initial speed of our
vehicle?"

"Yes, my worthy friend. By taking into account all the elements of the
problem, the distance from the centre of the earth to the centre of the
moon, of the radius of the earth, the volume of the earth and the volume
of the moon, I can determine exactly what the initial speed of the
projectile ought to be, and that by a very simple formula."

"Show me the formula."

"You shall see it. Only I will not give you the curve really traced by
the bullet between the earth and the moon, by taking into account their
movement of translation round the sun. No. I will consider both bodies
to be motionless, and that will be sufficient for us."

"Why?"

"Because that would be seeking to solve the problem called 'the problem
of the three bodies,' for which the integral calculus is not yet far
enough advanced."

"Indeed," said Michel Ardan in a bantering tone; "then mathematics have
not said their last word."

"Certainly not," answered Barbicane.

"Good! Perhaps the Selenites have pushed the integral calculus further
than you! By-the-bye, what is the integral calculus?"

"It is the inverse of the differential calculus," answered Barbicane
seriously.

"Much obliged."

"To speak otherwise, it is a calculus by which you seek finished
quantities of what you know the differential quantities."

"That is clear at least," answered Barbicane with a quite satisfied air.

"And now," continued Barbicane, "for a piece of paper and a pencil, and
in half-an-hour I will have found the required formula."

That said, Barbicane became absorbed in his work, whilst Nicholl looked
into space, leaving the care of preparing breakfast to his companion.

Half-an-hour had not elapsed before Barbicane, raising his head, showed
Michel Ardan a page covered with algebraical signs, amidst which the
following general formula was discernible:--

    1   2   2          r         m'    r     r
    - (v - v ) = gr { --- - 1 + --- ( --- - ---) }
    2       0          x         m    d-x   d-r

"And what does that mean?" asked Michel.

"That means," answered Nicholl, "that the half of _v_ minus _v_ zero
square equals _gr_ multiplied by _r_ upon _x_ minus 1 plus _m_ prime
upon _m_ multiplied by _r_ upon _d_ minus _x_, minus _r_ upon _d_ minus
_x_ minus _r_--"

"_X_ upon _y_ galloping upon _z_ and rearing upon _p_" cried Michel
Ardan, bursting out laughing. "Do you mean to say you understand that,
captain?"

"Nothing is clearer."

"Then," said Michel Ardan, "it is as plain as a pikestaff, and I want
nothing more."

"Everlasting laugher," said Barbicane, "you wanted algebra, and now you
shall have it over head and ears."

"I would rather be hung!"

"That appears a good solution, Barbicane," said Nicholl, who was
examining the formula like a _connaisseur_. "It is the integral of the
equation of 'vis viva,' and I do not doubt that it will give us the
desired result."

"But I should like to understand!" exclaimed Michel. "I would give ten
years of Nicholl's life to understand!"

"Then listen," resumed Barbicane. "The half of _v_ minus _v_ zero square
is the formula that gives us the demi-variation of the 'vis viva.'"

"Good; and does Nicholl understand what that means?"

"Certainly, Michel," answered the captain. "All those signs that look so
cabalistic to you form the clearest and most logical language for those
who know how to read it."

"And do you pretend, Nicholl," asked Michel, "that by means of these
hieroglyphics, more incomprehensible than the Egyptian ibis, you can
find the initial speed necessary to give to the projectile?"

"Incontestably," answered Nicholl; "and even by that formula I could
always tell you what speed it is going at on any point of the journey."

"Upon your word of honour?"

"Yes."

"Then you are as clever as our president."

"No, Michel, all the difficulty consists in what Barbicane has done. It
is to establish an equation which takes into account all the conditions
of the problem. The rest is only a question of arithmetic, and requires
nothing but a knowledge of the four rules."

"That's something," answered Michel Ardan, who had never been able to
make a correct addition in his life, and who thus defined the rule: "A
Chinese puzzle, by which you can obtain infinitely various results."

Still Barbicane answered that Nicholl would certainly have found the
formula had he thought about it.

"I do not know if I should," said Nicholl, "for the more I study it the
more marvellously correct I find it."

"Now listen," said Barbicane to his ignorant comrade, "and you will see
that all these letters have a signification."

"I am listening," said Michel, looking resigned.

"_d_," said Barbicane, "is the distance from the centre of the earth to
the centre of the moon, for we must take the centres to calculate the
attraction."

"That I understand."

"_r_ is the radius of the earth."

"_r_, radius; admitted."

"_m_ is the volume of the earth; _m prime_ that of the moon. We are
obliged to take into account the volume of the two attracting bodies, as
the attraction is in proportion to the volume."

"I understand that."

"_g_ represents gravity, the speed acquired at the end of a second by a
body falling on the surface of the earth. Is that clear?"

"A mountain stream!" answered Michel.

"Now I represent by _x_ the variable distance that separates the
projectile from the centre of the earth, and by _v_ the velocity the
projectile has at that distance."

"Good."

"Lastly, the expression _v_ zero which figures in the equation is the
speed the bullet possesses when it emerges from the atmosphere."

"Yes," said Nicholl, "you were obliged to calculate the velocity from
that point, because we knew before that the velocity at departure is
exactly equal to 3/2 of the velocity upon emerging from the atmosphere."

"Don't understand any more!" said Michel.

"Yet it is very simple," said Barbicane.

"I do not find it very simple," replied Michel.

"It means that when our projectile reached the limit of the terrestrial
atmosphere it had already lost one-third of its initial velocity."

"As much as that?"

"Yes, my friend, simply by friction against the atmosphere. You will
easily understand that the greater its speed the more resistance it
would meet with from the air."

"That I admit," answered Michel, "and I understand it, although your _v_
zero two and your _v_ zero square shake about in my head like nails in a
sack."

"First effect of algebra," continued Barbicane. "And now to finish we
are going to find the numerical known quantity of these different
expressions--that is to say, find out their value."

"You will finish me first!" answered Michel.

"Some of these expressions," said Barbicane, "are known; the others have
to be calculated."

"I will calculate those," said Nicholl.

"And _r_," resumed Barbicane, "_r_ is the radius of the earth under the
latitude of Florida, our point of departure, _d_--that is to say, the
distance from the centre of the earth to the centre of the moon equals
fifty-six terrestrial radii--"

Nicholl rapidly calculated.

"That makes 356,720,000 metres when the moon is at her perigee--that is
to say, when she is nearest to the earth."

"Very well," said Barbicane, "now _m_ prime upon _m_--that is to say,
the proportion of the moon's volume to that of the earth equals 1/81."

"Perfect," said Michel.

"And _g_, the gravity, is to Florida 9-1/81 metres. From whence it
results that _gr_ equals--"

"Sixty-two million four hundred and twenty-six thousand square metres,"
answered Nicholl.

"What next?" asked Michel Ardan.

"Now that the expressions are reduced to figures, I am going to find the
velocity _v zero_--that is to say, the velocity that the projectile
ought to have on leaving the atmosphere to reach the point of equal
attraction with no velocity. The velocity at that point I make equal
_zero_, and _x_, the distance where the neutral point is, will be
represented by the nine-tenths of _d_--that is to say, the distance that
separates the two centres."

"I have some vague idea that it ought to be so," said Michel.

"I shall then have, _x_ equals nine-tenths of _d_, and _v_ equals
_zero_, and my formula will become--"

Barbicane wrote rapidly on the paper--

     2              10r   1    10r    r
    v  = 2 gr { 1 - ---  --- ( --- - ---) }
     0               9d   81    d    d-r

Nicholl read it quickly.

"That's it! that is it!" he cried.

"Is it clear?" asked Barbicane.

"It is written in letters of fire!" answered Nicholl.

"Clever fellows!" murmured Michel.

"Do you understand now?" asked Barbicane.

"If I understand!" cried Michel Ardan. "My head is bursting with it."

"Thus," resumed Barbicane, "_v zero_ square equals 2 _gr_ multiplied by
1 minus 10 _r_ upon 9 _d_ minus 1/81 multiplied by 10 _r_ upon _d_ minus
_r_ upon _d_ minus _r_."

"And now," said Nicholl, "in order to obtain the velocity of the bullet
as it emerges from the atmosphere I have only to calculate."

The captain, like a man used to overcome all difficulties, began to
calculate with frightful rapidity. Divisions and multiplications grew
under his fingers. Figures dotted the page. Barbicane followed him with
his eyes, whilst Michel Ardan compressed a coming headache with his two
hands.

"Well, what do you make it?" asked Barbicane after several minutes'
silence.

"I make it 11,051 metres in the first second."

"What do you say?" said Barbicane, starting.

"Eleven thousand and fifty-one metres."

"Malediction!" cried the president with a gesture of despair.

"What's the matter with you?" asked Michel Ardan, much surprised.

"The matter! why if at this moment the velocity was already diminished
one-third by friction, the initial speed ought to have been--"

"Sixteen thousand five hundred and seventy-six metres!" answered
Nicholl.

"But the Cambridge Observatory declared that 11,000 metres were enough
at departure, and our bullet started with that velocity only!"

"Well?" asked Nicholl.

"Why it was not enough!"

"No."

"We shall not reach the neutral point."

"The devil!"

"We shall not even go half way!"

"_Nom d'un boulet_!" exclaimed Michel Ardan, jumping up as if the
projectile were on the point of striking against the terrestrial globe.

"And we shall fall back upon the earth!"




CHAPTER V.

THE TEMPERATURE OF SPACE.


This revelation acted like a thunderbolt. Who could have expected such
an error in calculation? Barbicane would not believe it. Nicholl went
over the figures again. They were correct. The formula which had
established them could not be mistrusted, and, when verified, the
initial velocity of 16,576 metres, necessary for attaining the neutral
point, was found quite right.

The three friends looked at one another in silence. No one thought about
breakfast after that. Barbicane, with set teeth, contracted brow, and
fists convulsively closed, looked through the port-light. Nicholl
folded his arms and examined his calculations. Michel Ardan murmured--

"That's just like _savants_! That's the way they always do! I would give
twenty pistoles to fall upon the Cambridge Observatory and crush it,
with all its stupid staff inside!"

All at once the captain made a reflection which struck Barbicane at
once.

"Why," said he, "it is seven o'clock in the morning, so we have been
thirty-two hours on the road. We have come more than half way, and we
are not falling yet that I know of!"

Barbicane did not answer, but after a rapid glance at the captain he
took a compass, which he used to measure the angular distance of the
terrestrial globe. Then through the lower port-light he made a very
exact observation from the apparent immobility of the projectile. Then
rising and wiping the perspiration from his brow, he put down some
figures upon paper. Nicholl saw that the president wished to find out
from the length of the terrestrial diameter the distance of the bullet
from the earth. He looked at him anxiously.

"No!" cried Barbicane in a few minutes' time, "we are not falling! We
are already more than 50,000 leagues from the earth! We have passed the
point the projectile ought to have stopped at if its speed had been only
11,000 metres at our departure! We are still ascending!"

"That is evident," answered Nicholl; "so we must conclude that our
initial velocity, under the propulsion of the 400,000 lbs. of
gun-cotton, was greater than the 11,000 metres. I can now explain to
myself why we met with the second satellite, that gravitates at more
than 2,000 leagues from the earth, in less than thirteen minutes."

"That explanation is so much the more probable," added Barbicane,
"because by throwing out the water in our movable partitions the
projectile was made considerably lighter all at once."

"That is true," said Nicholl.

"Ah, my brave Nicholl," cried Barbicane, "we are saved!"

"Very well then," answered Michel Ardan tranquilly, "as we are saved,
let us have breakfast."

Nicholl was not mistaken. The initial speed had happily been greater
than that indicated by the Cambridge Observatory, but the Cambridge
Observatory had no less been mistaken.

The travellers, recovered from their false alarm, sat down to table and
breakfasted merrily. Though they ate much they talked more. Their
confidence was greater after the "algebra incident."

"Why should we not succeed?" repeated Michel Ardan. "Why should we not
arrive? We are on the road; there are no obstacles before us, and no
stones on our route. It is free--freer than that of a ship that has to
struggle with the sea, or a balloon with the wind against it! Now if a
ship can go where it pleases, or a balloon ascend where it pleases, why
should not our projectile reach the goal it was aimed at?"

"It will reach it," said Barbicane.

"If only to honour the American nation," added Michel Ardan, "the only
nation capable of making such an enterprise succeed--the only one that
could have produced a President Barbicane! Ah! now I think of it, now
that all our anxieties are over, what will become of us? We shall be as
dull as stagnant water."

Barbicane and Nicholl made gestures of repudiation.

"But I foresaw this, my friends," resumed Michel Ardan. "You have only
to say the word. I have chess, backgammon, cards, and dominoes at your
disposition. We only want a billiard-table!"

"What?" asked Barbicane, "did you bring such trifles as those?"

"Certainly," answered Michel; "not only for our amusement, but also in
the praiseworthy intention of bestowing them upon Selenite inns."

"My friend," said Barbicane, "if the moon is inhabited its inhabitants
appeared some thousands of years before those of the earth, for it
cannot be doubted that the moon is older than the earth. If, therefore,
the Selenites have existed for thousands of centuries--if their brains
are organised like that of human beings--they have invented all that we
have invented, already, and even what we shall only invent in the lapse
of centuries. They will have nothing to learn from us, and we shall have
everything to learn from them."

"What!" answered Michel, "do you think they have had artists like
Phidias, Michael Angelo, or Raphael?"

"Yes."

"Poets like Homer, Virgil, Milton, Lamartine, and Hugo?"

"I am sure of it."

"Philosophers like Plato, Aristotle, Descartes, and Kant?"

"I have no doubt of it."

"_Savants_ like Archimedes, Euclid, Pascal, and Newton?"

"I could swear it."

"Clowns like Arnal, and photographers like--Nadar?"

"I am certain of it."

"Then, friend Barbicane, if these Selenites are as learned as we, and
even more so, why have they not hurled a lunar projectile as far as the
terrestrial regions?"

"Who says they have not done it?" answered Barbicane seriously.

"In fact," added Nicholl, "it would have been easier to them than to us,
and that for two reasons--the first because the attraction is six times
less on the surface of the moon than on the surface of the earth, which
would allow a projectile to go up more easily; secondly the projectile
would only have 8,000 leagues to travel instead of 80,000, which would
require a force of propulsion ten times less."

"Then," resumed Michel, "I repeat--why have they not done it?"

"And I," replied Barbicane, "I repeat--who says they have not done it?"

"When?"

"Hundreds of centuries ago, before man's appearance upon earth."

"And the bullet? Where is the bullet? I ask to see the bullet!"

"My friend," answered Barbicane, "the sea covers five-sixths of our
globe, hence there are five good reasons for supposing that the lunar
projectile, if it has been fired, is now submerged at the bottom of the
Atlantic or Pacific, unless it was buried down some abyss at the epoch
when the earth's crust was not sufficiently formed."

"Old fellow," answered Michel, "you have an answer to everything, and I
bow before your wisdom. There is one hypothesis I would rather believe
than the others, and that is that the Selenites being older than we are
wiser, and have not invented gunpowder at all."

At that moment Diana claimed her share in the conversation by a sonorous
bark. She asked for her breakfast.

"Ah!" said Michel Ardan, "our arguments make us forget Diana and
Satellite!"

A good dish of food was immediately offered to the dog, who devoured it
with great appetite.

"Do you know, Barbicane," said Michel, "we ought to have made this
projectile a sort of Noah's Ark, and have taken a couple of all the
domestic animals with us to the moon."

"No doubt," answered Barbicane, "but we should not have had room
enough."

"Oh, we might have been packed a little tighter!"

"The fact is," answered Nicholl, "that oxen, cows, bulls, and horses,
all those ruminants would be useful on the lunar continent.
Unfortunately we cannot make our projectile either a stable or a
cowshed."

"But at least," said Michel Ardan, "we might have brought an ass,
nothing but a little ass, the courageous and patient animal old Silenus
loved to exhibit. I am fond of those poor asses! They are the least
favoured animals in creation. They are not only beaten during their
lifetime, but are still beaten after their death!"

"What do you mean by that?" asked Barbicane.

"Why, don't they use his skin to make drums of?"

Barbicane and Nicholl could not help laughing at this absurd reflection.
But a cry from their merry companion stopped them; he was bending over
Satellite's niche, and rose up saying--

"Good! Satellite is no longer ill."

"Ah!" said Nicholl.

"No!" resumed Michel, "he is dead. Now," he added in a pitiful tone,
"this will be embarrassing! I very much fear, poor Diana, that you will
not leave any of your race in the lunar regions!"

The unfortunate Satellite had not been able to survive his wounds. He
was dead, stone dead. Michel Ardan, much put out of countenance, looked
at his friends.

"This makes another difficulty," said Barbicane. "We can't keep the dead
body of this dog with us for another eight-and-forty hours."

"No, certainly not," answered Nicholl, "but our port-lights are hung
upon hinges. They can be let down. We will open one of them, and throw
the body into space."

The president reflected for a few minutes, and then said--

"Yes, that is what we must do, but we must take the most minute
precautions."

"Why?" asked Michel.

"For two reasons that I will explain to you," answered Barbicane. "The
first has reference to the air in the projectile, of which we must lose
as little as possible."

"But we can renew the air!"

"Not entirely. We can only renew the oxygen, Michel; and, by-the-bye, we
must be careful that the apparatus do not furnish us with this oxygen in
an immoderate quantity, for an excess of it would cause grave
physiological consequences. But although we can renew the oxygen we
cannot renew the azote, that medium which the lungs do not absorb, and
which ought to remain intact. Now the azote would rapidly escape if the
port-lights were opened."

"Not just the time necessary to throw poor Satellite out."

"Agreed; but we must do it quickly."

"And what is the second reason?" asked Michel.

"The second reason is that we must not allow the exterior cold, which is
excessive, to penetrate into our projectile lest we should be frozen
alive."

"Still the sun--"

"The sun warms our projectile because it absorbs its rays, but it does
not warm the void we are in now. When there is no air there is no more
heat than there is diffused light, and where the sun's rays do not reach
directly it is both dark and cold. The temperature outside is only that
produced by the radiation of the stars--that is to say, the same as the
temperature of the terrestrial globe would be if one day the sun were to
be extinguished."

"No fear of that," answered Nicholl.

"Who knows?" said Michel Ardan. "And even supposing that the sun be not
extinguished, it might happen that the earth will move farther away from
it."

"Good!" said Nicholl; "that's one of Michel's ideas!"

"Well," resumed Michel, "it is well known that in 1861 the earth went
through the tail of a comet. Now suppose there was a comet with a power
of attraction greater than that of the sun, the terrestrial globe might
make a curve towards the wandering star, and the earth would become its
satellite, and would be dragged away to such a distance that the rays of
the sun would have no action on its surface."

"That might happen certainly," answered Barbicane, "but the consequences
would not be so redoubtable as you would suppose."

"How so?"

"Because heat and cold would still be pretty well balanced upon our
globe. It has been calculated that if the earth had been carried away by
the comet of 1861, it would only have felt, when at its greatest
distance from the sun, a heat sixteen times greater than that sent to us
by the moon--a heat which, when focussed by the strongest lens, produces
no appreciable effect."

"Well?" said Michel.

"Wait a little," answered Barbicane. "It has been calculated that at its
perihelion, when nearest to the sun, the earth would have borne a heat
equal to 28,000 times that of summer. But this heat, capable of
vitrifying terrestrial matters, and of evaporating water, would have
formed a thick circle of clouds which would have lessened the excessive
heat, hence there would be compensation between the cold of the aphelion
and the heat of the perihelion, and an average probably supportable."

"At what number of degrees do they estimate the temperature of the
planetary space?"

"Formerly," answered Barbicane, "it was believed that this temperature
was exceedingly low. By calculating its thermometric diminution it was
fixed at millions of degrees below zero. It was Fourier, one of Michel's
countrymen, an illustrious _savant_ of the _Académie des Sciences_, who
reduced these numbers to a juster estimation. According to him, the
temperature of space does not get lower than 60° Centigrade."

Michel whistled.

"It is about the temperature of the polar regions," answered Barbicane,
"at Melville Island or Fort Reliance--about 56° Centigrade below zero."

"It remains to be proved," said Nicholl, "that Fourier was not mistaken
in his calculations. If I am not mistaken, another Frenchman, M.
Pouillet, estimates the temperature of space at 160° below zero. We
shall be able to verify that."

"Not now," answered Barbicane, "for the solar rays striking directly
upon our thermometer would give us, on the contrary, a very elevated
temperature. But when we get upon the moon, during the nights, a
fortnight long, which each of its faces endures alternately, we shall
have leisure to make the experiment, for our satellite moves in the
void."

"What do you mean by the void?" asked Michel; "is it absolute void?"

"It is absolutely void of air."

"Is there nothing in its place?"

"Yes, ether," answered Barbicane.

"Ah! and what is ether?"

"Ether, my friend, is an agglomeration of imponderable particles, which,
relatively to their dimensions, are as far removed from each other as
the celestial bodies are in space, so say works on molecular physics. It
is these atoms that by their vibrating movement produce light and heat
by making four hundred and thirty billions of oscillations a second."

"Millions of millions!" exclaimed Michel Ardan; "then _savants_ have
measured and counted these oscillations! All these figures, friend
Barbicane, are _savants'_ figures, which reach the ear but say nothing
to the mind."

"But they are obliged to have recourse to figures."

"No. It would be much better to compare. A billion signifies nothing. An
object of comparison explains everything. Example--When you tell me that
Uranus is 76 times larger than the earth, Saturn 900 times larger,
Jupiter 1,300 times larger, the sun 1,300,000 times larger, I am not
much wiser. So I much prefer the old comparisons of the _Double
Liégoise_ that simply tells you, 'The sun is a pumpkin two feet in
diameter, Jupiter an orange, Saturn a Blenheim apple, Neptune a large
cherry, Uranus a smaller cherry, the earth a pea, Venus a green pea,
Mars the head of a large pin, Mercury a grain of mustard, and Juno,
Ceres, Vesta, and Pallas fine grains of sand!' Then I know what it
means!"

After this tirade of Michel Ardan's against _savants_ and their
billions, which he delivered without stopping to take breath, they set
about burying Satellite. He was to be thrown into space like sailors
throw a corpse into the sea.

As President Barbicane had recommended, they had to act quickly so as to
lose as little air as possible. The bolts upon the right-hand port-hole
were carefully unscrewed, and an opening of about half a yard made,
whilst Michel prepared to hurl his dog into space. The window, worked by
a powerful lever, which conquered the pressure of air in the interior
upon the sides of the projectile, moved upon its hinges, and Satellite
was thrown out. Scarcely a particle of air escaped, and the operation
succeeded so well that later on Barbicane did not fear to get rid of all
the useless rubbish that encumbered the vehicle in the same way.




CHAPTER VI.

QUESTIONS AND ANSWERS.


On the 4th of December, at 5 a.m. by terrestrial reckoning, the
travellers awoke, having been fifty-four hours on their journey. They
had only been five hours and forty minutes more than half the time
assigned for the accomplishment of their journey, but they had come more
than seven-tenths of the distance. This peculiarity was due to their
regularly-decreasing speed.

When they looked at the earth through the port-light at the bottom, it
only looked like a black spot drowned in the sun's rays. No crescent or
pale light was now to be seen. The next day at midnight the earth would
be new at the precise moment when the moon would be full. Above, the
Queen of Night was nearing the line followed by the projectile, so as to
meet it at the hour indicated. All around the dark vault was studded
with brilliant specks which seemed to move slowly; but through the great
distance they were at their relative size did not seem to alter much.
The sun and the stars appeared exactly as they do from the earth. The
moon was considerably enlarged; but the travellers' not very powerful
telescopes did not as yet allow them to make very useful observations on
her surface, or to reconnoitre the topographical or geological details.

The time went by in interminable conversations. The talk was especially
about the moon. Each brought his contingent of particular knowledge.
Barbicane's and Nicholl's were always serious, Michel Ardan's always
fanciful. The projectile, its situation and direction, the incidents
that might arise, the precautions necessitated by its fall upon the
moon, all this afforded inexhaustible material for conjecture.

Whilst breakfasting a question of Michel's relative to the projectile
provoked a rather curious answer from Barbicane, and one worthy of being
recorded.

Michel, supposing the bullet to be suddenly stopped whilst still endowed
with its formidable initial velocity, wished to know what the
consequences would have been.

"But," answered Barbicane, "I don't see how the projectile could have
been stopped."

"But let us suppose it," answered Nicholl.

"It is an impossible supposition," replied the practical president,
"unless the force of impulsion had failed. But in that case its speed
would have gradually decreased, and would not have stopped abruptly."

"Admit that it had struck against some body in space."

"What body?"

"The enormous meteor we met."

"Then," said Nicholl, "the projectile would have been broken into a
thousand pieces, and we with it."

"More than that," answered Barbicane, "we should have been burnt alive."

"Burnt!" exclaimed Michel. "I regret it did not happen for us just to
see."

"And you would have seen with a vengeance," answered Barbicane. "It is
now known that heat is only a modification of movement when water is
heated--that is to say, when heat is added to it--that means the giving
of movement to its particles."

"That is an ingenious theory!" said Michel.

"And a correct one, my worthy friend, for it explains all the phenomena
of caloric. Heat is only molecular movement, a single oscillation of the
particles of a body. When the break is put on a train it stops. But what
becomes of the movement which animated it? Why do they grease the axles
of the wheels? In order to prevent them catching fire from the movement
lost by transformation. Do you understand?"

"Admirably," answered Michel. "For example, when I have been running
some time, and am covered with sweat, why am I forced to stop? Simply
because my movement has been transformed into heat."

Barbicane could not help laughing at this _répartie_ of Michel's. Then
resuming his theory--

"Thus," said he, "in case of a collision, it would have happened to our
projectile as it does to the metal cannon-ball after striking
armour-plate; it would fall burning, because its movement had been
transformed into heat. In consequence, I affirm that if our bullet had
struck against the asteroid, its speed, suddenly annihilated, would have
produced heat enough to turn it immediately into vapour."

"Then," asked Nicholl, "what would happen if the earth were to be
suddenly stopped in her movement of translation?"

"Her temperature would be carried to such a point," answered Barbicane,
"that she would be immediately reduced to vapour."

"Good," said Michel; "that means of ending the world would simplify many
things."

"And suppose the earth were to fall upon the sun?" said Nicholl.

"According to calculations," answered Barbicane, "that would develop a
heat equal to that produced by 1,600 globes of coal, equal in volume to
the terrestrial globe."

"A good increase of temperature for the sun," replied Michel Ardan, "of
which the inhabitants of Uranus or Neptune will probably not complain,
for they must be dying of cold on their planet."

"Thus, then, my friends, any movement suddenly stopped produces heat.
This theory makes it supposed that the sun is constantly fed by an
incessant fall of bodies upon its surface. It has been calculated--"

"Now I shall be crushed," murmured Michel, "for figures are coming."

"It has been calculated," continued Barbicane imperturbably, "that the
shock of each asteroid upon the sun must produce heat equal to that of
4,000 masses of coal of equal volume."

"And what is the heat of the sun?" asked Michel.

"It is equal to that which would be produced by a stratum of coal
surrounding the sun to a depth of twenty-seven kilometres."

"And that heat--"

"Could boil 2,900,000,000 of cubic myriametres of water an hour." (A
myriametre is equal to rather more than 6.2138 miles, or 6 miles 1
furlong 28 poles.)

"And we are not roasted by it?" cried Michel.

"No," answered Barbicane, "because the terrestrial atmosphere absorbs
four-tenths of the solar heat. Besides, the quantity of heat intercepted
by the earth is only two thousand millionth of the total."

"I see that all is for the best," replied Michel, "and that our
atmosphere is a useful invention, for it not only allows us to breathe,
but actually prevents us roasting."

"Yes," said Nicholl, "but, unfortunately, it will not be the same on the
moon."

"Bah!" said Michel, always confident. "If there are any inhabitants they
breathe. If there are no longer any they will surely have left enough
oxygen for three people, if only at the bottom of those ravines where it
will have accumulated by reason of its weight! Well, we shall not climb
the mountains! That is all."

And Michel, getting up, went to look at the lunar disc, which was
shining with intolerable brilliancy.

"Faith!" said he, "it must be hot up there."

"Without reckoning," answered Nicholl, "that daylight lasts 360 hours."

"And by way of compensation night has the same duration," said
Barbicane, "and as heat is restored by radiation, their temperature must
be that of planetary space."

"A fine country truly!" said Nicholl.

"Never mind! I should like to be there already! It will be comical to
have the earth for a moon, to see it rise on the horizon, to recognise
the configuration of its continents, to say to oneself, 'There's America
and there's Europe;' then to follow it till it is lost in the rays of
the sun! By-the-bye, Barbicane, have the Selenites any eclipses?"

"Yes, eclipses of the sun," answered Barbicane, "when the centres of the
three stars are on the same line with the earth in the middle. But they
are merely annular eclipses, during which the earth, thrown like a
screen across the solar disc, allows the greater part to be seen."

"Why is there no total eclipse?" asked Nicholl. "Is it because the cone
of shade thrown by the earth does not extend beyond the moon?"

"Yes, if you do not take into account the refraction produced by the
terrestrial atmosphere, not if you do take that refraction into account.
Thus, let _delta_ be the horizontal parallax and _p_ the apparent
semidiameter--"

"Ouf!" said Michel, "half of _v_ zero square! Do speak the vulgar
tongue, man of algebra!"

"Well, then, in popular language," answered Barbicane, "the mean
distance between the moon and the earth being sixty terrestrial radii,
the length of the cone of shadow, by dint of refraction, is reduced to
less than forty-two radii. It follows, therefore, that during the
eclipses the moon is beyond the cone of pure shade, and the sun sends it
not only rays from its edges, but also rays from its centre."

"Then," said Michel in a grumbling tone, "why is there any eclipse when
there ought to be none?"

"Solely because the solar rays are weakened by the refraction, and the
atmosphere which they traverse extinguishes the greater part of them."

"That reason satisfies me," answered Michel; "besides, we shall see for
ourselves when we get there. Now, Barbicane, do you believe that the
moon is an ancient comet?"

"What an idea!"

"Yes," replied Michel, with amiable conceit, "I have a few ideas of that
kind."

"But that idea does not originate with Michel," answered Nicholl.

"Then I am only a plagiarist."

"Without doubt," answered Nicholl. "According to the testimony of the
ancients, the Arcadians pretended that their ancestors inhabited the
earth before the moon became her satellite. Starting from this fact,
certain _savants_ think the moon was a comet which its orbit one day
brought near enough to the earth to be retained by terrestrial
attraction."

"And what truth is there in that hypothesis?" asked Michel.

"None," answered Barbicane, "and the proof is that the moon has not kept
a trace of the gaseous envelope that always accompanies comets."

"But," said Nicholl, "might not the moon, before becoming the earth's
satellite, have passed near enough to the sun to leave all her gaseous
substances by evaporation?"

"It might, friend Nicholl, but it is not probable."

"Why?"

"Because--because, I really don't know."

"Ah, what hundreds of volumes we might fill with what we don't know!"
exclaimed Michel. "But I say," he continued, "what time is it?"

"Three o'clock," answered Nicholl.

"How the time goes," said Michel, "in the conversation of _savants_ like
us! Decidedly I feel myself getting too learned! I feel that I am
becoming a well of knowledge!"

So saying, Michel climbed to the roof of the projectile, "in order
better to observe the moon," he pretended. In the meanwhile his
companions watched the vault of space through the lower port-light.
There was nothing fresh to signalise.

When Michel Ardan came down again he approached the lateral port-light,
and suddenly uttered an exclamation of surprise.

"What is the matter now?" asked Barbicane.

The president approached the glass and saw a sort of flattened sack
floating outside at some yards' distance from the projectile. This
object seemed motionless like the bullet, and was consequently animated
with the same ascensional movement.

"Whatever can that machine be?" said Michel Ardan. "Is it one of the
corpuscles of space which our projectile holds in its radius of
attraction, and which will accompany it as far as the moon?"

"What I am astonished at," answered Nicholl, "is that the specific
weight of this body, which is certainly superior to that of the bullet,
allows it to maintain itself so rigorously on its level."

"Nicholl," said Barbicane, after a moment's reflection, "I do not know
what that object is, but I know perfectly why it keeps on a level with
the projectile."

"Why, pray?"

"Because we are floating in the void where bodies fall or move--which is
the same thing--with equal speed whatever their weight or form may be.
It is the air which, by its resistance, creates differences in weight.
When you pneumatically create void in a tube, the objects you throw down
it, either lead or feathers, fall with the same rapidity. Here in space
you have the same cause and the same effect."

"True," said Nicholl, "and all we throw out of the projectile will
accompany us to the moon."

"Ah! what fools we are!" cried Michel.

"Why this qualification?" asked Barbicane.

"Because we ought to have filled the projectile with useful objects,
books, instruments, tools, &c. We could have thrown them all out, and
they would all have followed in our wake! But, now I think of it, why
can't we take a walk outside this? Why can't we go into space through
the port-light? What delight it would be to be thus suspended in ether,
more favoured even than birds that are forced to flap their wings to
sustain them!"

"Agreed," said Barbicane, "but how are we to breathe?"

"Confounded air to fail so inopportunely!"

"But if it did not fail, Michel, your density being inferior to that of
the projectile, you would soon remain behind."

"Then it is a vicious circle."

"All that is most vicious."

"And we must remain imprisoned in our vehicle."

"Yes, we must."

"Ah!" cried Michel in a formidable voice.

"What is the matter with you?" asked Nicholl.

"I know, I guess what this pretended asteroid is! It is not a broken
piece of planet!"

"What is it, then?" asked Nicholl.

"It is our unfortunate dog! It is Diana's husband!"

In fact, this deformed object, reduced to nothing, and quite
unrecognisable, was the body of Satellite flattened like a bagpipe
without wind, and mounting, for ever mounting!




CHAPTER VII.

A MOMENT OF INTOXICATION.


Thus a curious but logical, strange yet logical phenomenon took place
under these singular conditions. Every object thrown out of the
projectile would follow the same trajectory and only stop when it did.
That furnished a text for conversation which the whole evening could not
exhaust. The emotion of the three travellers increased as they
approached the end of their journey. They expected unforeseen incidents,
fresh phenomena, and nothing would have astonished them under present
circumstances. Their excited imagination outdistanced the projectile,
the speed of which diminished notably without their feeling it. But the
moon grew larger before their eyes, and they thought they had only to
stretch out their hands to touch it.

The next day, the 5th of December, they were all wide awake at 5 a.m.
That day was to be the last of their journey if the calculations were
exact. That same evening, at midnight, within eighteen hours, at the
precise moment of full moon, they would reach her brilliant disc. The
next midnight would bring them to the goal of their journey, the most
extraordinary one of ancient or modern times. At early dawn, through the
windows made silvery with her rays, they saluted the Queen of Night with
a confident and joyful hurrah.

The moon was sailing majestically across the starry firmament. A few
more degrees and she would reach that precise point in space where the
projectile was to meet her. According to his own observations, Barbicane
thought that he should accost her in her northern hemisphere, where vast
plains extend and mountains are rare--a favourable circumstance if the
lunar atmosphere was, according to received opinion, stored up in deep
places only.

"Besides," observed Michel Ardan, "a plain is more suitable for landing
upon than a mountain. A Selenite landed in Europe on the summit of Mont
Blanc, or in Asia on a peak of the Himalayas, would not be precisely at
his destination!"

"What is more," added Nicholl, "on a plain the projectile will remain
motionless after it has touched the ground, whilst it would roll down a
hill like an avalanche, and as we are not squirrels we should not come
out safe and sound. Therefore all is for the best."

In fact, the success of the audacious enterprise no longer appeared
doubtful. Still one reflection occupied Barbicane; but not wishing to
make his two companions uneasy, he kept silence upon it.

The direction of the projectile towards the northern hemisphere proved
that its trajectory had been slightly modified. The aim, mathematically
calculated, ought to have sent the bullet into the very centre of the
lunar disc. If it did not arrive there it would be because it had
deviated. What had caused it? Barbicane could not imagine nor determine
the importance of this deviation, for there was no datum to go upon. He
hoped, however, that the only result would be to take them towards the
upper edge of the moon, a more suitable region for landing.

Barbicane, therefore, without saying anything to his friends, contented
himself with frequently observing the moon, trying to see if the
direction of the projectile would not change. For the situation would
have been so terrible had the bullet, missing its aim, been dragged
beyond the lunar disc and fallen into interplanetary space.

At that moment the moon, instead of appearing flat like a disc, already
showed her convexity. If the sun's rays had reached her obliquely the
shadow then thrown would have made the high mountains stand out. They
could have seen the gaping craters and the capricious furrows that cut
up the immense plains. But all relief was levelled in the intense
brilliancy. Those large spots that give the appearance of a human face
to the moon were scarcely distinguishable.

"It may be a face," said Michel Ardan, "but I am sorry for the amiable
sister of Apollo, her face is so freckled!"

In the meantime the travellers so near their goal ceaselessly watched
this new world. Their imagination made them take walks over these
unknown countries. They climbed the elevated peaks. They descended to
the bottom of the large amphitheatres. Here and there they thought they
saw vast seas scarcely kept together under an atmosphere so rarefied,
and streams of water that poured them their tribute from the mountains.
Leaning over the abyss they hoped to catch the noise of this orb for
ever mute in the solitudes of the void.

This last day left them the liveliest remembrances. They noted down the
least details. A vague uneasiness took possession of them as they
approached their goal. This uneasiness would have been doubled if they
had felt how slight their speed was. It appeared quite insufficient to
take them to the end of their journey. This was because the projectile
scarcely "weighed" anything. Its weight constantly decreased, and would
be entirely annihilated on that line where the lunar and terrestrial
attractions neutralise each other, causing surprising effects.

Nevertheless, in spite of his preoccupations, Michel Ardan did not
forget to prepare the morning meal with his habitual punctuality. They
ate heartily. Nothing was more excellent than their broth liquefied by
the heat of the gas. Nothing better than these preserved meats. A few
glasses of good French wine crowned the repast, and caused Michel Ardan
to remark that the lunar vines, warmed by this ardent sun, ought to
distil the most generous wines--that is, if they existed. Any way, the
far-seeing Frenchman had taken care not to forget in his collection some
precious cuttings of the Médoc and Côte d'Or, upon which he counted
particularly.

The Reiset and Regnault apparatus always worked with extreme precision.
The air was kept in a state of perfect purity. Not a particle of
carbonic acid resisted the potash, and as to the oxygen, that, as
Captain Nicholl said, was of "first quality." The small amount of
humidity in the projectile mixed with this air and tempered its dryness,
and many Paris, London, or New York apartments and many theatres do not
certainly fulfil hygienic conditions so well.

But in order to work regularly this apparatus had to be kept going
regularly. Each morning Michel inspected the escape regulators, tried
the taps, and fixed by the pyrometer the heat of the gas. All had gone
well so far, and the travellers, imitating the worthy J.T. Maston, began
to get so stout that they would not be recognisable if their
imprisonment lasted several months. They behaved like chickens in a
cage--they fattened.

Looking through the port lights Barbicane saw the spectre of the
dog, and the different objects thrown out of the projectile, which
obstinately accompanied it. Diana howled lamentably when she perceived
the remains of Satellite. All the things seemed as motionless as if they
had rested upon solid ground.

"Do you know, my friends," said Michel Ardan, "that if one of us had
succumbed to the recoil shock at departure we should have been much
embarrassed as to how to get rid of him? You see the accusing corpse
would have followed us in space like remorse!"

"That would have been sad," said Nicholl.

"Ah!" continued Michel, "what I regret is our not being able to take a
walk outside. What delight it would be to float in this radiant ether,
to bathe in these pure rays of the sun! If Barbicane had only thought of
furnishing us with diving-dresses and air-pumps I should have ventured
outside, and have assumed the attitude of a flying-horse on the summit
of the projectile."

"Ah, old fellow!" answered Barbicane, "you would not have stayed there
long in spite of your diving-dress; you would have burst like an obus by
the expansion of air inside you, or rather like a balloon that goes up
too high. So regret nothing, and do not forget this: while we are moving
in the void you must do without any sentimental promenade out of the
projectile."

Michel Ardan allowed himself to be convinced in a certain measure. He
agreed that the thing was difficult, but not "impossible;" that was a
word he never uttered.

The conversation passed from this subject to another, and never
languished an instant. It seemed to the three friends that under these
conditions ideas came into their heads like leaves in the first warm
days of spring.

Amidst the questions and answers that crossed each other during this
morning, Nicholl asked one that did not get an immediate solution.

"I say," said he, "it is all very well to go to the moon, but how shall
we get back again?"

"What do you mean by that, Nicholl?" asked Barbicane gravely.

"It seems to me very inopportune to ask about getting away from a
country before you get to it," added Michel.

"I don't ask that question because I want to draw back, but I repeat my
question, and ask, 'How shall we get back?'"

"I have not the least idea," answered Barbicane.

"And as for me," said Michel, "if I had known how to come back I should
not have gone."

"That is what you call answering," cried Nicholl.

"I approve of Michel's words, and add that the question has no actual
interest. We will think about that later on, when we want to return.
Though the Columbiad will not be there, the projectile will."

"Much good that will be, a bullet without a gun!"

"A gun can be made, and so can powder! Neither metal, saltpetre, nor
coal can be wanting in the bowels of the moon. Besides, in order to
return you have only the lunar attraction to conquer, and you will only
have 8,000 leagues to go so as to fall on the terrestrial globe by the
simple laws of weight."

"That is enough," said Michel, getting animated. "Let us hear no more
about returning. As to communicating with our ancient colleagues upon
earth, that will not be difficult."

"How are we to do that, pray?"

"By means of meteors hurled by the lunar volcanoes."

"A good idea, Michel," answered Barbicane. "Laplace has calculated that
a force five times superior to that of our cannons would suffice to send
a meteor from the moon to the earth. Now there is no volcano that has
not a superior force of propulsion."

"Hurrah!" cried Michel. "Meteors will be convenient postmen and will not
cost anything! And how we shall laugh at the postal service! But now I
think--"

"What do you think?"

"A superb idea! Why did we not fasten a telegraph wire to our bullet? We
could have exchanged telegrams with the earth!"

"And the weight of a wire 86,000 leagues long," answered Nicholl, "does
that go for nothing?"

"Yes, for nothing! We should have trebled the charge of the Columbiad!
We could have made it four times--five times--greater!" cried Michel,
whose voice became more and more violent.

"There is a slight objection to make to your project," answered
Barbicane. "It is that during the movement of rotation of the globe our
wire would have been rolled round it like a chain round a windlass, and
it would inevitably have dragged us down to the earth again."

"By the thirty-nine stars of the Union!" said Michel, "I have nothing
but impracticable ideas to-day--ideas worthy of J.T. Maston! But now I
think of it, if we do not return to earth J.T. Maston will certainly
come to us!"

"Yes! he will come," replied Barbicane; "he is a worthy and courageous
comrade. Besides, what could be easier? Is not the Columbiad still lying
in Floridian soil? Is cotton and nitric acid wanting wherewith to
manufacture the projectile? Will not the moon again pass the zenith of
Florida? In another eighteen years will she not occupy exactly the same
place that she occupies to-day?"

"Yes," repeated Michel--"yes, Maston will come, and with him our friends
Elphinstone, Blomsberry, and all the members of the Gun Club, and they
will be welcome! Later on trains of projectiles will be established
between the earth and the moon! Hurrah for J.T. Maston!"

It is probable that if the Honourable J.T. Maston did not hear the
hurrahs uttered in his honour his ears tingled at least. What was he
doing then? He was no doubt stationed in the Rocky Mountains at Long's
Peak, trying to discover the invisible bullet gravitating in space. If
he was thinking of his dear companions it must be acknowledged that they
were not behindhand with him, and that, under the influence of singular
exaltation, they consecrated their best thoughts to him.

But whence came the animation that grew visibly greater in the
inhabitants of the projectile? Their sobriety could not be questioned.
Must this strange erethismus of the brain be attributed to the
exceptional circumstances of the time, to that proximity of the Queen of
Night from which a few hours only separated them, or to some secret
influence of the moon acting on their nervous system? Their faces became
as red as if exposed to the reverberation of a furnace; their
respiration became more active, and their lungs played like
forge-bellows; their eyes shone with extraordinary flame, and their
voices became formidably loud, their words escaped like a champagne-cork
driven forth by carbonic acid gas; their gestures became disquieting,
they wanted so much room to perform them in. And, strange to say, they
in no wise perceived this excessive tension of the mind.

"Now," said Nicholl in a sharp tone--"now that I do not know whether we
shall come back from the moon, I will know what we are going there for!"

"What we are going there for!" answered Barbicane, stamping as if he
were in a fencing-room; "I don't know."

"You don't know!" cried Michel with a shout that provoked a sonorous
echo in the projectile.

"No, I have not the least idea!" answered Barbicane, shouting in unison
with his interlocutor.

"Well, then, I know," answered Michel.

"Speak, then," said Nicholl, who could no longer restrain the angry
tones of his voice.

"I shall speak if it suits me!" cried Michel, violently seizing his
companion's arm. "It must suit you!" said Barbicane, with eyes on fire
and threatening hands. "It was you who drew us into this terrible
journey, and we wish to know why!"

"Yes," said the captain, "now I don't know where I am going, I will know
why I am going."

"Why?" cried Michel, jumping a yard high--"why? To take possession of
the moon in the name of the United States! To add a fortieth State to
the Union! To colonise the lunar regions, to cultivate them, people
them, to take them all the wonders of art, science, and industry! To
civilise the Selenites, unless they are more civilised than we are, and
to make them into a republic if they have not already done it for
themselves!"

"If there are any Selenites!" answered Nicholl, who under the empire of
this inexplicable intoxication became very contradictory.

"Who says there are no Selenites?" cried Michel in a threatening tone.

"I do!" shouted Nicholl.

"Captain," said Michel, "do not repeat that insult or I will knock your
teeth down your throat!"

The two adversaries were about to rush upon one another, and this
incoherent discussion was threatening to degenerate into a battle, when
Barbicane interfered.

"Stop, unhappy men," said he, putting his two companions back to back,
"if there are no Selenites, we will do without them!"

"Yes!" exclaimed Michel, who did not care more about them than that. "We
have nothing to do with the Selenites! Bother the Selenites!"

"The empire of the moon shall be ours," said Nicholl. "Let us found a
Republic of three!"

"I shall be the Congress," cried Michel.

"And I the Senate," answered Nicholl.

"And Barbicane the President," shouted Michel.

"No President elected by the nation!" answered Barbicane.

"Well, then, a President elected by the Congress," exclaimed Michel;
"and as I am the Congress I elect you unanimously."

"Hurrah! hurrah! hurrah for President Barbicane!" exclaimed Nicholl.

"Hip--hip--hip! hurrah!" vociferated Michel Ardan.

Then the President and Senate struck up "Yankee Doodle" as loudly as
they could, whilst the Congress shouted the virile "Marseillaise."

Then began a frantic dance with maniacal gestures, mad stamping, and
somersaults of boneless clowns. Diana took part in the dance, howling
too, and jumped to the very roof of the projectile. An inexplicable
flapping of wings and cock-crows of singular sonority were heard. Five
or six fowls flew about striking the walls like mad bats.

Then the three travelling companions, whose lungs were disorganised
under some incomprehensible influence, more than intoxicated, burnt by
the air that had set their breathing apparatus on fire, fell motionless
upon the bottom of the projectile.




CHAPTER VIII.

AT SEVENTY-EIGHT THOUSAND ONE HUNDRED AND FOURTEEN LEAGUES.


What had happened? What was the cause of that singular intoxication, the
consequences of which might prove so disastrous? Simply carelessness on
Michel's part, which Nicholl was able to remedy in time.

After a veritable swoon, which lasted a few minutes, the captain, who
was the first to regain consciousness, soon collected his intellectual
faculties.

Although he had breakfasted two hours before, he began to feel as hungry
as if he had not tasted food for several days. His whole being, his
brain and stomach, were excited to the highest point.

He rose, therefore, and demanded a supplementary collation from Michel,
who was still unconscious, and did not answer. Nicholl, therefore,
proceeded to prepare some cups of tea, in order to facilitate the
absorption of a dozen sandwiches. He busied himself first with lighting
a fire, and so struck a match.

What was his surprise to see the sulphur burn with extraordinary and
almost unbearable brilliancy! From the jet of gas he lighted rose a
flame equal to floods of electric light.

A revelation took place in Nicholl's mind. This intensity of light, the
physiological disturbance in himself, the extra excitement of all his
moral and sensitive faculties--he understood it all.

"The oxygen!" he exclaimed.

And leaning over the air-apparatus, he saw that the tap was giving out a
flood of colourless, savourless, and odourless gas, eminently vital, but
which in a pure state produces the gravest disorders in the
constitution. Through carelessness Michel had left the tap full on.
Nicholl made haste to turn off this flow of oxygen with which the
atmosphere was saturated, and which would have caused the death of the
travellers, not by suffocation, but by combustion.

An hour afterwards the air was relieved, and gave their normal play to
the lungs. By degrees the three friends recovered from their
intoxication; but they were obliged to recover from their oxygen like a
drunkard from his wine.

When Michel knew his share of responsibility in this incident he did not
appear in the least disconcerted. This unexpected intoxication broke the
monotony of the journey. Many foolish things had been said under its
influence, but they had been forgotten as soon as said.

"Then," added the merry Frenchman, "I am not sorry for having
experienced the effect of this captious gas. Do you know, my friends,
that there might be a curious establishment set up with oxygen-rooms,
where people whose constitutions are weak might live a more active life
during a few hours at least? Suppose we had meetings where the air could
be saturated with this heroic fluid, theatres where the managers would
send it out in strong doses, what passion there would be in the souls of
actors and spectators, what fire and what enthusiasm! And if, instead of
a simple assembly, a whole nation could be saturated with it, what
activity, what a supplement of life it would receive! Of an exhausted
nation it perhaps would make a great and strong nation, and I know more
than one state in old Europe that ought to put itself under the oxygen
_régime_ in the interest of its health."

Michel spoke with as much animation as if the tap were still full on.
But with one sentence Barbicane damped his enthusiasm.

"All that is very well, friend Michel," he said, "but now perhaps you
will tell us where those fowls that joined in our concert came from."

"Those fowls?"

"Yes."

In fact, half-a-dozen hens and a superb cock were flying hither and
thither.

"Ah, the stupids!" cried Michel. "It was the oxygen that put them in
revolt."

"But what are you going to do with those fowls?" asked Barbicane.

"Acclimatise them in the moon of course! For the sake of a joke, my
worthy president; simply a joke that has unhappily come to nothing! I
wanted to let them out on the lunar continent without telling you! How
astounded you would have been to see these terrestrial poultry pecking
the fields of the moon!"

"Ah, _gamin_, you eternal boy!" answered Barbicane, "you don't want
oxygen to make you out of your senses! You are always what we were under
the influence of this gas! You are always insane!"

"Ah! how do we know we were not wiser then?" replied Michel Ardan.

After this philosophical reflection the three friends repaired the
disorder in the projectile. Cock and hens were put back in their cage.
But as they were doing this Barbicane and his two companions distinctly
perceived a fresh phenomenon.

Since the moment they had left the earth their own weight, that of the
bullet and the objects it contained, had suffered progressive
diminution. Though they could not have any experience of this in the
projectile, a moment must come when the effect upon themselves and the
tools and instruments they used would be felt.

Of course scales would not have indicated this loss of weight, for the
weights used would have lost precisely as much as the object itself; but
a spring weighing-machine, the tension of which is independent of
attraction, would have given the exact valuation of this diminution.

It is well known that attraction, or weight, is in proportion to the
bulk, and in inverse proportion to the square of distances. Hence this
consequence. If the earth had been alone in space, if the other heavenly
bodies were to be suddenly annihilated, the projectile, according to
Newton's law, would have weighed less according to its distance from the
earth, but without ever losing its weight entirely, for the terrestrial
attraction would always have made itself felt, no matter at what
distance.

But in the case with which we are dealing, a moment must come when the
projectile would not be at all under the law of gravitation, after
allowing for the other celestial bodies, whose effect could not be set
down as zero.

In fact, the trajectory of the projectile was between the earth and the
moon. As it went farther away from the earth terrestrial attraction
would be diminished in inverse proportion to the square of distances,
but the lunar attraction would be augmented in the same proportion. A
point must, therefore, be reached where these two attractions would
neutralise each other, and the bullet would have no weight at all. If
the volumes of the moon and earth were equal, this point would have been
reached at an equal distance between the two bodies. But by taking their
difference of bulk into account it was easy to calculate that this
point would be situated at 47/52 of the journey, or at 78,114 leagues
from the earth.

At this point a body that had no principle of velocity or movement in
itself would remain eternally motionless, being equally attracted by the
two heavenly bodies, and nothing drawing it more towards one than the
other.

Now if the force of impulsion had been exactly calculated the projectile
ought to reach that point with no velocity, having lost all weight like
the objects it contained.

What would happen then? Three hypotheses presented themselves.

Either the projectile would have kept some velocity, and passing the
point of equal attraction, would fall on the moon by virtue of the
excess of lunar attraction over terrestrial attraction.

Or velocity sufficient to reach the neutral point being wanting, it
would fall back on the earth by virtue of the excess of terrestrial
attraction over lunar attraction.

Or lastly, endowed with sufficient velocity to reach the neutral point,
but insufficient to pass it, it would remain eternally suspended in the
same place, like the pretended coffin of Mahomet, between the zenith and
nadir.

Such was the situation, and Barbicane clearly explained the consequences
to his travelling companions. They were interested to the highest
degree. How were they to know when they had reached this neutral point,
situated at 78,114 leagues from the earth, at the precise moment when
neither they nor the objects contained in the projectile should be in
any way subject to the laws of weight?

Until now the travellers, though they had remarked that this action
diminished little by little, had not yet perceived its total absence.
But that day, about 11 a.m., Nicholl having let a tumbler escape from
his hand, instead of falling, it remained suspended in the air.

"Ah!" cried Michel Ardan, "this is a little amusing chemistry!"

And immediately different objects, weapons, bottles, &c, left to
themselves, hung suspended as if by miracle. Diana, too, lifted up by
Michel into space, reproduced, but without trickery, the marvellous
suspensions effected by Robert-Houdin and Maskelyne and Cook.

The three adventurous companions, surprised and stupefied in spite of
their scientific reasoning, carried into the domain of the marvellous,
felt weight go out of their bodies. When they stretched out their arms
they felt no inclination to drop them. Their heads vacillated on their
shoulders. Their feet no longer kept at the bottom of the projectile.
They were like staggering drunkards. Imagination has created men
deprived of their reflection, others deprived of their shadows! But here
reality, by the neutrality of active forces, made men in whom nothing
had any weight, and who weighed nothing themselves.

Suddenly Michel, making a slight spring, left the floor and remained
suspended in the air like the good monk in Murillo's _Cuisine des
Anges_. His two friends joined him in an instant, and all three, in the
centre of the projectile, figured a miraculous ascension.

"Is it believable? Is it likely? Is it possible?" cried Michel. "No. And
yet it exists! Ah! if Raphael could have seen us like this what an
Assumption he could have put upon canvas!"

"The Assumption cannot last," answered Barbicane. "If the projectile
passes the neutral point, the lunar attraction will draw us to the
moon."

"Then our feet will rest upon the roof of the projectile,' answered
Michel.

"No," said Barbicane, "because the centre of gravity in the projectile
is very low, and it will turn over gradually."

"Then all our things will be turned upside down for certain!"

"Do not alarm yourself, Michel," answered Nicholl. "There is nothing of
the kind to be feared. Not an object will move; the projectile will turn
insensibly."

"In fact," resumed Barbicane, "when it has cleared the point of equal
attraction, its bottom, relatively heavier, will drag it perpendicularly
down to the moon. But in order that such a phenomenon should take place
we must pass the neutral line."

"Passing the neutral line!" cried Michel. "Then let us do like the
sailors who pass the equator--let us water our passage!"

A slight side movement took Michel to the padded wall. Thence he took a
bottle and glasses, placed them "in space" before his companions, and
merrily touching glasses, they saluted the line with a triple hurrah.

This influence of the attractions lasted scarcely an hour. The
travellers saw themselves insensibly lowered towards the bottom, and
Barbicane thought he remarked that the conical end of the projectile
deviated slightly from the normal direction towards the moon. By an
inverse movement the bottom side approached it. Lunar attraction was
therefore gaining over terrestrial attraction. The fall towards the moon
began, insensibly as yet; it could only be that of a millimetre (0.03937
inch), and a third in the first second. But the attractive force would
gradually increase, the fall would be more accentuated, the projectile,
dragged down by its bottom side, would present its cone to the earth,
and would fall with increasing velocity until it reached the Selenite
surface. Now nothing could prevent the success of the enterprise, and
Nicholl and Michel Ardan shared Barbicane's joy.

Then they chatted about all the phenomena that had astounded them one
after another, especially about the neutralisation of the laws of
weight. Michel Ardan, always full of enthusiasm, wished to deduce
consequences which were only pure imagination.

"Ah! my worthy friends," he cried, "what progress we should make could
we but get rid upon earth of this weight, this chain that rivets us to
her! It would be the prisoner restored to liberty! There would be no
more weariness either in arms or legs. And if it is true that, in order
to fly upon the surface of the earth, to sustain yourself in the air by
a simple action of the muscles, it would take a force 150 times superior
to that we possess, a simple act of will, a caprice, would transport us
into space, and attraction would not exist."

"In fact," said Nicholl, laughing, "if they succeeded in suppressing
gravitation, like pain is suppressed by anaesthesia, it would change the
face of modern society!"

"Yes," cried Michel, full of his subject, "let us destroy weight and
have no more burdens! No more cranes, screw-jacks, windlasses, cranks,
or other machines will be wanted."

"Well said," replied Barbicane; "but if nothing had any weight nothing
would keep in its place, not even the hat on your head, worthy Michel;
nor your house, the stones of which only adhere by their weight! Not
even ships, whose stability upon the water is only a consequence of
weight. Not even the ocean, whose waves would no longer be held in
equilibrium by terrestrial attraction. Lastly, not even the atmosphere,
the molecules of which, being no longer held together, would disperse
into space!"

"That is a pity," replied Michel. "There is nothing like positive people
for recalling you brutally to reality!"

"Nevertheless, console yourself, Michel," resumed Barbicane, "for if no
star could exist from which the laws of weight were banished, you are at
least going to pay a visit where gravity is much less than upon earth."

"The moon?"

"Yes, the moon, on the surface of which objects weigh six times less
than upon the surface of the earth, a phenomenon very easy to
demonstrate."

"And shall we perceive it?" asked Michel. "Evidently, for 400 lbs. only
weigh 60 lbs. on the surface of the moon."

"Will not our muscular strength be diminished?"

"Not at all. Instead of jumping one yard you will be able to rise six."

"Then we shall be Hercules in the moon," cried Michel.

"Yes," replied Nicholl, "and the more so because if the height of the
Selenites is in proportion to the bulk of their globe they will be
hardly a foot high."

"Liliputians!" replied Michel. "Then I am going to play the _rôle_ of
Gulliver! We shall realise the fable of the giants! That is the
advantage of leaving one's own planet to visit the solar world!"

"But if you want to play Gulliver," answered Barbicane, "only visit the
inferior planets, such as Mercury, Venus, or Mars, whose bulk is rather
less than that of the earth. But do not venture into the big planets,
Jupiter, Saturn, Uranus, Neptune, for there the _rôles_ would be
inverted, and you would become Liliputian."

"And in the sun?"

"In the sun, though its density is four times less than that of the
earth, its volume is thirteen hundred and twenty-four thousand times
greater, and gravitation there is twenty-seven times greater than upon
the surface of our globe. Every proportion kept, the inhabitants ought
on an average to be two hundred feet high."

"The devil!" exclaimed Michel. "I should only be a pigmy!"

"Gulliver amongst the giants," said Nicholl.

"Just so," answered Barbicane.

"It would not have been a bad thing to carry some pieces of artillery to
defend oneself with."

"Good," replied Barbicane; "your bullets would have no effect on the
sun, and they would fall to the ground in a few minutes."

"That's saying a great deal!"

"It is a fact," answered Barbicane. "Gravitation is so great on that
enormous planet that an object weighing 70 lbs. on the earth would weigh
1,930 lbs. on the surface of the sun. Your hat would weigh 20 lbs.! your
cigar 1/2 lb.! Lastly, if you fell on the solar continent your weight
would be so great--about 5,000 lbs.--that you could not get up again."

"The devil!" said Michel, "I should have to carry about a portable
crane! Well, my friends, let us be content with the moon for to-day.
There, at least, we shall cut a great figure! Later on we shall see if
we will go to the sun, where you can't drink without a crane to lift the
glass to your mouth."




CHAPTER IX.

THE CONSEQUENCES OF DEVIATION.


Barbicane had now no fear, if not about the issue of the journey, at
least about the projectile's force of impulsion. Its own speed would
carry it beyond the neutral line. Therefore it would not return to the
earth nor remain motionless upon the point of attraction. One hypothesis
only remained to be realised, the arrival of the bullet at its goal
under the action of lunar attraction.

In reality it was a fall of 8,296 leagues upon a planet, it is true,
where the gravity is six times less than upon the earth. Nevertheless it
would be a terrible fall, and one against which all precautions ought to
be taken without delay.

These precautions were of two sorts; some were for the purpose of
deadening the shock at the moment the projectile would touch lunar
ground; others were to retard the shock, and so make it less violent.

In order to deaden the shock, it was a pity that Barbicane was no longer
able to employ the means that had so usefully weakened the shock at
departure--that is to say, the water used as a spring and the movable
partitions. The partitions still existed, but water was wanting, for
they could not use the reserve for this purpose--that would be precious
in case the liquid element should fail on the lunar soil.

Besides, this reserve would not have been sufficient for a spring. The
layer of water stored in the projectile at their departure, and on which
lay the waterproof disc, occupied no less than three feet in depth, and
spread over a surface of not less than fifty-four feet square. Now the
receptacles did not contain the fifth part of that. They were therefore
obliged to give up this effectual means of deadening the shock.

Fortunately Barbicane, not content with employing water, had furnished
the movable disc with strong spring buffers, destined to lessen the
shock against the bottom, after breaking the horizontal partitions.
These buffers were still in existence; they had only to be fitted on and
the movable disc put in its place. All these pieces, easy to handle, as
they weighed scarcely anything, could be rapidly mounted.

This was done. The different pieces were adjusted without difficulty. It
was only a matter of bolts and screws. There were plenty of tools. The
disc was soon fixed on its steel buffers like a table on its legs. One
inconvenience resulted from this arrangement. The lower port-hole was
covered, and it would be impossible for the travellers to observe the
moon through that opening whilst they were being precipitated
perpendicularly upon her. But they were obliged to give it up. Besides,
through the lateral openings they could still perceive the vast lunar
regions, like the earth is seen from the car of a balloon.

This placing of the disc took an hour's work. It was more than noon when
the preparations were completed. Barbicane made fresh observations on
the inclination of the projectile, but to his great vexation it had not
turned sufficiently for a fall; it appeared to be describing a curve
parallel with the lunar disc. The Queen of Night was shining splendidly
in space, whilst opposite the orb of day was setting her on fire with
his rays.

This situation soon became an anxious one.

"Shall we get there?" said Nicholl.

"We must act as though we should," answered Barbicane.

"You are faint-hearted fellows," replied Michel Ardan. "We shall get
there, and quicker than we want."

This answer recalled Barbicane to his preparations, and he occupied
himself with placing the contrivances destined to retard the fall.

It will be remembered that, at the meeting held in Tampa Town, Florida,
Captain Nicholl appeared as Barbicane's enemy, and Michel Ardan's
adversary. When Captain Nicholl said that the projectile would be broken
like glass, Michel answered that he would retard the fall by means of
fusees properly arranged.

In fact, powerful fusees, resting upon the bottom, and being fired
outside, might, by producing a recoil action, lessen the speed of the
bullet. These fusees were to burn in the void it is true, but oxygen
would not fail them, for they would furnish that themselves like the
lunar volcanoes, the deflagration of which has never been prevented by
the want of atmosphere around the moon.

Barbicane had therefore provided himself with fireworks shut up in
little cannons of bored steel, which could be screwed on to the bottom
of the projectile. Inside these cannons were level with the bottom;
outside they went half a foot beyond it. There were twenty of them. An
opening in the disc allowed them to light the match with which each was
provided. All the effect took place outside. The exploding mixture had
been already rammed into each gun. All they had to do, therefore, was to
take up the metallic buffers fixed in the base, and to put these cannons
in their place, where they fitted exactly.

This fresh work was ended about 3 p.m., and all precaution taken they
had now nothing to do but to wait.

In the meantime the projectile visibly drew nearer the moon. It was,
therefore, submitted in some proportion to its influence; but its own
velocity also inclined it in an oblique line. Perhaps the result of
these two influences would be a line that would become a tangent. But it
was certain that the projectile was not falling normally upon the
surface of the moon, for its base, by reason of its weight, ought to
have been turned towards her.

Barbicane's anxiety was increased on seeing that his bullet resisted the
influence of gravitation. It was the unknown that was before him--the
unknown of the interstellar regions. He, the _savant_, believed that he
had foreseen the only three hypotheses that were possible--the return to
the earth, the fall upon the moon, or stagnation upon the neutral line!
And here a fourth hypothesis, full of all the terrors of the infinite,
cropped up inopportunely. To face it without flinching took a resolute
_savant_ like Barbicane, a phlegmatic being like Nicholl, or an
audacious adventurer like Michel Ardan.

Conversation was started on this subject. Other men would have
considered the question from a practical point of view. They would have
wondered where the projectile would take them to. Not they, however.
They sought the cause that had produced this effect.

"So we are off the line," said Michel. "But how is that?"

"I am very much afraid," answered Nicholl, "that notwithstanding all the
precautions that were taken, the Columbiad was not aimed correctly. The
slightest error would suffice to throw us outside the pale of lunar
attraction."

"Then the cannon was pointed badly?" said Michel.

"I do not think so," answered Barbicane. "The cannon was rigorously
perpendicular, and its direction towards the zenith of the place was
incontestable. The moon passing the zenith, we ought to have reached her
at the full. There is another reason, but it escapes me."

"Perhaps we have arrived too late," suggested Nicholl.

"Too late?" said Barbicane.

"Yes," resumed Nicholl. "The notice from the Cambridge Observatory said
that the transit ought to be accomplished in ninety-seven hours thirteen
minutes and twenty seconds. That means that before that time the moon
would not have reached the point indicated, and after she would have
passed it."

"Agreed," answered Barbicane. "But we started on the 1st of December at
11h. 13m. 25s. p.m., and we ought to arrive at midnight on the 5th,
precisely as the moon is full. Now this is the 5th of December. It is
half-past three, and eight hours and a half ought to be sufficient to
take us to our goal. Why are we not going towards it?"

"Perhaps the velocity was greater than it ought to have been," answered
Nicholl, "for we know now that the initial velocity was greater than it
was supposed to be."

"No! a hundred times no!" replied Barbicane. "An excess of velocity,
supposing the direction of the projectile to have been correct, would
not have prevented us reaching the moon. No! There has been a deviation.
We have deviated!"

"Through whom? through what?" asked Nicholl.

"I cannot tell," answered Barbicane.

"Well, Barbicane," then said Michel, "should you like to know what I
think about why we have deviated?"

"Say what you think."

"I would not give half a dollar to know! We have deviated, that is a
fact. It does not matter much where we are going. We shall soon find
out. As we are being carried along into space we shall end by falling
into some centre of attraction or another."

Barbicane could not be contented with this indifference of Michel
Ardan's. Not that he was anxious about the future. But what he wanted to
know, at any price, was why his projectile had deviated.

In the meantime the projectile kept on its course sideways to the moon,
and the objects thrown out along with it. Barbicane could even prove by
the landmarks upon the moon, which was only at 2,000 leagues' distance,
that its speed was becoming uniform--a fresh proof that they were not
falling. Its force of impulsion was prevailing over the lunar
attraction, but the trajectory of the projectile was certainly taking
them nearer the lunar disc, and it might be hoped that at a nearer point
the weight would predominate and provoke a fall.

The three friends, having nothing better to do, went on with their
observations. They could not, however, yet determine the topography of
the satellite. Every relief was levelled under the action of the solar
rays.

They watched thus through the lateral windows until 8 p.m. The moon then
looked so large that she hid half the firmament from them. The sun on
one side, and the Queen of Night on the other, inundated the projectile
with light.

At that moment Barbicane thought he could estimate at 700 leagues only
the distance that separated them from their goal. The velocity of the
projectile appeared to him to be 200 yards a second, or about 170
leagues an hour. The base of the bullet had a tendency to turn towards
the moon under the influence of the centripetal force; but the
centrifugal force still predominated, and it became probable that the
rectilinear trajectory would change to some curve the nature of which
could not be determined.

Barbicane still sought the solution of his insoluble problem. The hours
went by without result. The projectile visibly drew nearer to the moon,
but it was plain that it would not reach her. The short distance at
which it would pass her would be the result of two forces, attractive
and repulsive, which acted upon the projectile.

"I only pray for one thing," repeated Michel, "and that is to pass near
enough to the moon to penetrate her secrets."

"Confound the cause that made our projectile deviate!" cried Nicholl.

"Then," said Barbicane, as if he had been suddenly struck with an idea,
"confound that asteroid that crossed our path!"

"Eh?" said Michel Ardan.

"What do you mean?" exclaimed Nicholl.

"I mean," resumed Barbicane, who appeared convinced, "I mean that our
deviation is solely due to the influence of that wandering body."

"But it did not even graze us," continued Michel.

"What does that matter? Its bulk, compared with that of our projectile,
was enormous, and its attraction was sufficient to have an influence
upon our direction."

"That influence must have been very slight," said Nicholl.

"Yes, Nicholl, but slight as it was," answered Barbicane, "upon a
distance of 84,000 leagues it was enough to make us miss the moon!"




CHAPTER X.

THE OBSERVERS OF THE MOON.


Barbicane had evidently found the only plausible reason for the
deviation. However slight it had been, it had been sufficient to modify
the trajectory of the projectile. It was a fatality. The audacious
attempt had miscarried by a fortuitous circumstance, and unless anything
unexpected happened, the lunar disc could no longer be reached. Would
they pass it near enough to resolve certain problems in physics and
geology until then unsolved? This was the only question that occupied
the minds of these bold travellers. As to the fate the future held in
store for them, they would not even think about it. Yet what was to
become of them amidst these infinite solitudes when air failed them? A
few more days and they would fall suffocated in this bullet wandering at
hazard. But a few days were centuries to these intrepid men, and they
consecrated every moment to observing the moon they no longer hoped to
reach.

The distance which then separated the projectile from the satellite was
estimated at about 200 leagues. Under these conditions, as far as
regards the visibility of the details of the disc, the travellers were
farther from the moon than are the inhabitants of the earth with their
powerful telescopes.

It is, in fact, known that the instrument set up by Lord Rosse at
Parsonstown, which magnifies 6,500 times, brings the moon to within
sixteen leagues; and the powerful telescope set up at Long's Peak
magnifies 48,000 times, and brings the moon to within less than two
leagues, so that objects twelve yards in diameter were sufficiently
distinct.

Thus, then, at that distance the topographical details of the moon, seen
without a telescope, were not distinctly determined. The eye caught the
outline of those vast depressions inappropriately called "seas," but
they could not determine their nature. The prominence of the mountains
disappeared under the splendid irradiation produced by the reflection of
the solar rays. The eye, dazzled as if leaning over a furnace of molten
silver, turned from it involuntarily.

However, the oblong form of the orb was already clearly seen.

It appeared like a gigantic egg, with the small end turned towards the
earth. The moon, liquid and pliable in the first days of her formation,
was originally a perfect sphere. But soon, drawn within the pale of the
earth's gravitation, she became elongated under its influence. By
becoming a satellite she lost her native purity of form; her centre of
gravity was in advance of the centre of her figure, and from this fact
some _savants_ draw the conclusion that air and water might have taken
refuge on the opposite side of the moon, which is never seen from the
earth.

This alteration in the primitive forms of the satellite was only visible
for a few moments. The distance between the projectile and the moon
diminished visibly; its velocity was considerably less than its initial
velocity, but eight or nine times greater than that of our express
trains. The oblique direction of the bullet, from its very obliquity,
left Michel Ardan some hope of touching the lunar disc at some point or
other. He could not believe that he should not get to it. No, he could
not believe it, and this he often repeated. But Barbicane, who was a
better judge, always answered him with pitiless logic.

"No, Michel, no. We can only reach the moon by a fall, and we are not
falling. The centripetal force keeps us under the moon's influence, but
the centrifugal force sends us irresistibly away from it."

This was said in a tone that deprived Michel Ardan of his last hopes.

The portion of the moon the projectile was approaching was the northern
hemisphere. The selenographic maps make it the lower one, because they
are generally drawn up according to the image given by the telescopes,
and we know that they reverse the objects. Such was the _Mappa
Selenographica_ of Boeer and Moedler which Barbicane consulted. This
northern hemisphere presented vast plains, relieved by isolated
mountains.

At midnight the moon was full. At that precise moment the travellers
ought to have set foot upon her if the unlucky asteroid had not made
them deviate from their direction. The orb was exactly in the condition
rigorously determined by the Cambridge Observatory. She was
mathematically at her perigee, and at the zenith of the twenty-eighth
parallel. An observer placed at the bottom of the enormous Columbiad
while it is pointed perpendicularly at the horizon would have framed the
moon in the mouth of the cannon. A straight line drawn through the axis
of the piece would have passed through the centre of the moon.

It need hardly be stated that during the night between the 5th and 6th
of December the travellers did not take a minute's rest. Could they have
closed their eyes so near to a new world? No. All their feelings were
concentrated in one thought--to see! Representatives of the earth, of
humanity past and present, all concentrated in themselves, it was
through their eyes that the human race looked at these lunar regions and
penetrated the secrets of its satellite! A strange emotion filled their
hearts, and they went silently from one window to another.

Their observations were noted down by Barbicane, and were made
rigorously exact. To make them they had telescopes. To control them they
had maps.

The first observer of the moon was Galileo. His poor telescope only
magnified thirty times. Nevertheless, in the spots that pitted the lunar
disc "like eyes in a peacock's tail," he was the first to recognise
mountains, and measure some heights to which he attributed,
exaggerating, an elevation equal to the 20th of the diameter of the
disc, or 8,000 metres. Galileo drew up no map of his observations.

A few years later an astronomer of Dantzig, Hevelius--by operations
which were only exact twice a month, at the first and second
quadrature--reduced Galileo's heights to one-twenty-sixth only of the
lunar diameter. This was an exaggeration the other way. But it is to
this _savant_ that the first map of the moon is due. The light round
spots there form circular mountains, and the dark spots indicate vast
seas which, in reality, are plains. To these mountains and extents of
sea he gave terrestrial denominations. There is a Sinai in the middle of
an Arabia, Etna in the centre of Sicily, the Alps, Apennines,
Carpathians, the Mediterranean, the Black Sea, the Caspian, &c.--names
badly applied, for neither mountains nor seas recalled the configuration
of their namesakes on the globe. That large white spot, joined on the
south to vaster continents and terminated in a point, could hardly be
recognised as the inverted image of the Indian Peninsula, the Bay of
Bengal, and Cochin-China. So these names were not kept. Another
chartographer, knowing human nature better, proposed a fresh
nomenclature, which human vanity made haste to adopt.

This observer was Father Riccioli, a contemporary of Hevelius. He drew
up a rough map full of errors. But he gave to the lunar mountains the
names of great men of antiquity and _savants_ of his own epoch.

A third map of the moon was executed in the seventeenth century by
Dominique Cassini; superior to that of Riccioli in the execution, it is
inexact in the measurements. Several smaller copies were published, but
the plate long kept in the _Imprimerie Nationale_ was sold by weight as
old brass.

La Hire, a celebrated mathematician and designer, drew up a map of the
moon four and a half yards high, which was never engraved.

After him, a German astronomer, Tobie Marger, about the middle of the
eighteenth century, began the publication of a magnificent selenographic
map, according to lunar measures, which he rigorously verified; but his
death, which took place in 1762, prevented the termination of this
beautiful work.

It was in 1830 that Messrs. Boeer and Moedler composed their celebrated
_Mappa Selenographica_, according to an orthographical projection. This
map reproduces the exact lunar disc, such as it appears, only the
configurations of the mountains and plains are only correct in the
central part; everywhere else--in the northern or southern portions,
eastern or western--the configurations foreshortened cannot be compared
with those of the centre. This topographical map, one yard high and
divided into four parts, is a masterpiece of lunar chartography.

After these _savants_ may be cited the selenographic reliefs of the
German astronomer Julius Schmidt, the topographical works of Father
Secchi, the magnificent sheets of the English amateur, Waren de la Rue,
and lastly a map on orthographical projection of Messrs. Lecouturier and
Chapuis, a fine model set up in 1860, of very correct design and clear
outlines.

Such is the nomenclature of the different maps relating to the lunar
world. Barbicane possessed two, that of Messrs. Boeer and Moedler and
that of Messrs. Chapuis and Lecouturier. They were to make his work of
observer easier.

They had excellent marine glasses specially constructed for this
journey. They magnified objects a hundred times; they would therefore
have reduced the distance between the earth and the moon to less than
1,000 leagues. But then at a distance which towards 3 a.m. did not
exceed a hundred miles, and in a medium which no atmosphere obstructed,
these instruments brought the lunar level to less than fifteen hundred
metres.




CHAPTER XI.

IMAGINATION AND REALITY.


"Have you ever seen the moon?" a professor asked one of his pupils
ironically.

"No, sir," answered the pupil more ironically still, "but I have heard
it spoken of."

In one sense the jocose answer of the pupil might have been made by the
immense majority of sublunary beings. How many people there are who have
heard the moon spoken of and have never seen it--at least through a
telescope! How many even have never examined the map of their satellite!

Looking at a comprehensive selenographic map, one peculiarity strikes us
at once. In contrast to the geographical arrangements of the earth and
Mars, the continents occupy the more southern hemisphere of the lunar
globe. These continents have not such clear and regular boundary-lines
as those of South America, Africa, and the Indian Peninsula. Their
angular, capricious, and deeply-indented coasts are rich in gulfs and
peninsulas. They recall the confusion in the islands of the Sound, where
the earth is excessively cut up. If navigation has ever existed upon the
surface of the moon it must have been exceedingly difficult and
dangerous, and the Selenite mariners and hydrographers were greatly to
be pitied, the former when they came upon these perilous coasts, the
latter when they were marine surveying on the stormy banks.

It may also be noticed that upon the lunar spheroid the South Pole is
much more continental than the North Pole. On the latter there is only a
slight strip of land capping it, separated from the other continents by
vast seas. (When the word "seas" is used the vast plains probably
covered by the sea formerly must be understood.) On the south the land
covers nearly the whole hemisphere. It is, therefore, possible that the
Selenites have already planted their flag on one of their poles, whilst
Franklin, Ross, Kane, Dumont d'Urville, and Lambert have been unable to
reach this unknown point on the terrestrial globe.

Islands are numerous on the surface of the moon. They are almost all
oblong or circular, as though traced with a compass, and seem to form a
vast archipelago, like that charming group lying between Greece and Asia
Minor which mythology formerly animated with its most graceful legends.
Involuntarily the names of Naxos, Tenedos, Milo, and Carpathos come into
the mind, and you seek the ship of Ulysses or the "clipper" of the
Argonauts. That was what it appeared to Michel Ardan; it was a Grecian
Archipelago that he saw on the map. In the eyes of his less imaginative
companions the aspect of these shores recalled rather the cut-up lands
of New Brunswick and Nova Scotia; and where the Frenchman looked for
traces of the heroes of fable, these Americans were noting favourable
points for the establishment of mercantile houses in the interest of
lunar commerce and industry.

Some remarks on the orographical disposition of the moon must conclude
the description of its continents, chains of mountains, isolated
mountains, amphitheatres, and watercourses. The moon is like an immense
Switzerland--a continual Norway, where Plutonic influence has done
everything. This surface, so profoundly rugged, is the result of the
successive contractions of the crust while the orb was being formed. The
lunar disc is propitious for the study of great geological phenomena.
According to the remarks of some astronomers, its surface, although more
ancient than the surface of the earth, has remained newer. There there
is no water to deteriorate the primitive relief, the continuous action
of which produces a sort of general levelling. No air, the decomposing
influence of which modifies orographical profiles. There Pluto's work,
unaltered by Neptune's, is in all its native purity. It is the earth as
she was before tides and currents covered her with layers of soil.

After having wandered over these vast continents the eye is attracted by
still vaster seas. Not only does their formation, situation, and aspect
recall the terrestrial oceans, but, as upon earth, these seas occupy the
largest part of the globe. And yet these are not liquid tracts, but
plains, the nature of which the travellers hoped soon to determine.

Astronomers, it must be owned, have decorated these pretended seas with
at least odd names which science has respected at present. Michel Ardan
was right when he compared this map to a "map of tenderness," drawn up
by Scudery or Cyrano de Bergerac.

"Only," added he, "it is no longer the map of sentiment like that of the
18th century; it is the map of life, clearly divided into two parts, the
one feminine, the other masculine. To the women, the right hemisphere;
to the men, the left!"

When he spoke thus Michel made his prosaic companions shrug their
shoulders. Barbicane and Nicholl looked at the lunar map from another
point of view to that of their imaginative friend. However, their
imaginative friend had some reason on his side. Judge if he had not.

In the left hemisphere stretches the "Sea of Clouds," where human reason
is so often drowned. Not far off appears the "Sea of Rains," fed by all
the worries of existence. Near lies the "Sea of Tempests," where man
struggles incessantly against his too-often victorious passions. Then,
exhausted by deceptions, treasons, infidelities, and all the procession
of terrestrial miseries, what does he find at the end of his career? The
vast "Sea of Humours," scarcely softened by some drops from the waters
of the "Gulf of Dew!" Clouds, rain, tempests, humours, does the life of
man contain aught but these? and is it not summed up in these four
words?

The right-hand hemisphere dedicated to "the women" contains smaller
seas, the significant names of which agree with every incident of
feminine existence. There is the "Sea of Serenity," over which bends the
young maiden, and the "Lake of Dreams," which reflects her back a happy
future. The "Sea of Nectar," with its waves of tenderness and breezes of
love! The "Sea of Fecundity," the "Sea of Crises," and the "Sea of
Vapours," the dimensions of which are, perhaps, too restricted, and
lastly, that vast "Sea of Tranquillity" where all false passions, all
useless dreams, all unassuaged desires are absorbed, and the waves of
which flow peacefully into the "Lake of Death!"

What a strange succession of names! What a singular division of these
two hemispheres of the moon, united to one another like man and woman,
and forming a sphere of life, carried through space. And was not the
imaginative Michel right in thus interpreting the fancies of the old
astronomers?

But whilst his imagination thus ran riot on the "seas," his grave
companions were looking at things more geographically. They were
learning this new world by heart. They were measuring its angles and
diameters.

To Barbicane and Nicholl the "Sea of Clouds" was an immense depression
of ground, with circular mountains scattered about on it; covering a
great part of the western side of the southern hemisphere, it covered
184,800 square leagues, and its centre was in south latitude 15°, and
west longitude 20°. The Ocean of Tempests, _Oceanus Procellarum_, the
largest plain on the lunar disc, covered a surface of 328,300 square
leagues, its centre being in north latitude 10°, and east longitude 45°.
From its bosom emerge the admirable shining mountains of Kepler and
Aristarchus.

More to the north, and separated from the Sea of Clouds by high chains
of mountains, extends the Sea of Rains, _Mare Imbrium_, having its
central point in north latitude 35° and east longitude 20°; it is of a
nearly circular form, and covers a space of 193,000 leagues. Not far
distant the Sea of Humours, _Mare Humorum_, a little basin of 44,200
square leagues only, was situated in south latitude 25°, and east
longitude 40°. Lastly, three gulfs lie on the coast of this
hemisphere--the Torrid Gulf, the Gulf of Dew, and the Gulf of Iris,
little plains inclosed by high chains of mountains.

The "Feminine" hemisphere, naturally more capricious, was distinguished
by smaller and more numerous seas. These were, towards the north, the
_Mare Frigoris_, in north latitude 55° and longitude 0°, with 76,000
square leagues of surface, which joined the Lake of Death and Lake of
Dreams; the Sea of Serenity, _Mare Serenitatis_, by north latitude 25°
and west longitude 20°, comprising a surface of 80,000 square leagues;
the Sea of Crises, _Mare Crisium_, round and very compact, in north
latitude 17° and west longitude 55°, a surface of 40,000 square leagues,
a veritable Caspian buried in a girdle of mountains. Then on the
equator, in north latitude 5° and west longitude 25°, appeared the Sea
of Tranquillity, _Mare Tranquillitatis_, occupying 121,509 square
leagues of surface; this sea communicated on the south with the Sea of
Nectar, _Mare Nectaris_, an extent of 28,800 square leagues, in south
latitude 15° and west longitude 35°, and on the east with the Sea of
Fecundity, _Mare Fecunditatis_, the vastest in this hemisphere,
occupying 219,300 square leagues, in south latitude 3° and west
longitude 50°. Lastly, quite to the north and quite to the south lie two
more seas, the Sea of Humboldt, _Mare Humboldtianum_, with a surface of
6,500 square leagues, and the Southern Sea, _Mare Australe_, with a
surface of 26,000.

In the centre of the lunar disc, across the equator and on the zero
meridian, lies the centre gulf, _Sinus Medii_, a sort of hyphen between
the two hemispheres.

Thus appeared to the eyes of Nicholl and Barbicane the surface always
visible of the earth's satellite. When they added up these different
figures they found that the surface of this hemisphere measured
4,738,160 square leagues, 3,317,600 of which go for volcanoes, chains of
mountains, amphitheatres, islands--in a word, all that seems to form the
solid portion of the globe--and 1,410,400 leagues for the seas, lake,
marshes, and all that seems to form the liquid portion, all of which was
perfectly indifferent to the worthy Michel.

It will be noticed that this hemisphere is thirteen and a-half times
smaller than the terrestrial hemisphere. And yet upon it selenographers
have already counted 50,000 craters. It is a rugged surface worthy of
the unpoetical qualification of "green cheese" which the English have
given it.

When Barbicane pronounced this disobliging name Michel Ardan gave a
bound.

"That is how the Anglo-Saxons of the 19th century treat the beautiful
Diana, the blonde Phoebe, the amiable Isis, the charming Astarte, the
Queen of Night, the daughter of Latona and Jupiter, the younger sister
of the radiant Apollo!"




CHAPTER XII.

OROGRAPHICAL DETAILS.


It has already been pointed out that the direction followed by the
projectile was taking us towards the northern hemisphere of the moon.
The travellers were far from that central point which they ought to have
touched if their trajectory had not suffered an irremediable deviation.

It was half-past twelve at night. Barbicane then estimated his distance
at 1,400 kilometres, a distance rather greater than the length of the
lunar radius, and which must diminish as he drew nearer the North Pole.
The projectile was then not at the altitude of the equator, but on the
tenth parallel, and from that latitude carefully observed on the map as
far as the Pole, Barbicane and his two companions were able to watch the
moon under the most favourable circumstances.

In fact, by using telescopes, this distance of 1,400 kilometres was
reduced to fourteen miles, or four and a-half leagues. The telescope of
the Rocky Mountains brought the moon still nearer, but the terrestrial
atmosphere singularly lessened its optical power. Thus Barbicane, in his
projectile, by looking through his glass, could already perceive certain
details almost imperceptible to observers on the earth.

"My friends," then said the president in a grave voice, "I do not know
where we are going, nor whether we shall ever see the terrestrial globe
again. Nevertheless, let us do our work as if one day it would be of use
to our fellow-creatures. Let us keep our minds free from all
preoccupation. We are astronomers. This bullet is the Cambridge
Observatory transported into space. Let us make our observations."

That said, the work was begun with extreme precision, and it faithfully
reproduced the different aspects of the moon at the variable distances
which the projectile reached in relation to that orb.

Whilst the bullet was at the altitude of the 10th north parallel it
seemed to follow the 20th degree of east longitude.

Here may be placed an important remark on the subject of the map which
they used for their observations. In the selenographic maps, where, on
account of the reversal of objects by the telescope, the south is at the
top and the north at the bottom, it seems natural that the east should
be on the left and the west on the right. However, it is not so. If the
map were turned upside down, and showed the moon as she appears, the
east would be left and the west right, the inverse of the terrestrial
maps. The reason of this anomaly is the following:--Observers situated
in the northern hemisphere--in Europe, for example--perceive the moon in
the south from them. When they look at her they turn their backs to the
north, the opposite position they take when looking at a terrestrial
map. Their backs being turned to the north, they have the east to the
left and the west to the right. For observers in the southern
hemisphere--in Patagonia, for example--the west of the moon would be on
their left and the east on their right, for the south would be behind
them.

Such is the reason for the apparent reversal of these two cardinal
points, and this must be remembered whilst following the observations of
President Barbicane.

Helped by the _Mappa Selenographica_ of Boeer and Moedler, the
travellers could, without hesitating, survey that portion of the disc in
the field of their telescopes.

"What are we looking at now?" asked Michel.

"At the northern portion of the Sea of Clouds," answered Barbicane. "We
are too far off to make out its nature. Are those plains composed of
dry sand, as the first astronomers believed? Or are they only immense
forests, according to the opinion of Mr. Waren de la Rue, who grants a
very low but very dense atmosphere to the moon? We shall find that out
later on. We will affirm nothing till we are quite certain."

"This Sea of Clouds is rather doubtfully traced upon the maps. It is
supposed that this vast plain is strewn with blocks of lava vomited by
the neighbouring volcanoes on its right side, Ptolemy, Purbach, and
Arzachel. The projectile was drawing sensibly nearer, and the summits
which close in this sea on the north were distinctly visible. In front
rose a mountain shining gloriously, the top of which seemed drowned in
the solar rays."

"That mountain is--?" asked Michel.

"Copernicus," answered Barbicane.

"Let us have a look at Copernicus," said Michel.

This mountain, situated in north latitude 9°, and east longitude 20°,
rises to a height of nearly 11,000 feet above the surface of the moon.
It is quite visible from the earth, and astronomers can study it with
ease, especially during the phase between the last quarter and the new
moon, because then shadows are thrown lengthways from east to west, and
allow the altitudes to be taken.

Copernicus forms the most important radiating system in the southern
hemisphere, according to Tycho Brahe. It rises isolated like a gigantic
lighthouse over that of the Sea of Clouds bordering on the Sea of
Tempests, and it lights two oceans at once with its splendid rays. Those
long luminous trails, so dazzling at full moon, made a spectacle without
an equal; they pass the boundary chains on the north, and stretch as far
as the Sea of Rains. At 1 a.m., terrestrial time, the projectile, like a
balloon carried into space, hung over this superb mountain.

Barbicane could perfectly distinguish its chief features. Copernicus is
comprehended in the series of annular mountains of the first order in
the division of the large amphitheatres. Like the mountains of Kepler
and Aristarchus, which overlook the Ocean of Tempests, it appears
sometimes like a brilliant point through the pale light, and used to be
taken for a volcano in activity. But it is only an extinct volcano, like
those on that side of the moon. Its circumference presented a diameter
of about twenty-two leagues. The glasses showed traces of
stratifications in it produced by successive eruptions, and its
neighbourhood appeared strewn with volcanic remains, which were still
seen in the crater.

"There exist," said Barbicane, "several sorts of amphitheatres an the
surface of the moon, and it is easy to see that Copernicus belongs to
the radiating class. If we were nearer it we should perceive the cones
which bristle in the interior, and which were formerly so many fiery
mouths. A curious arrangement, and one without exception on the lunar
disc, is presented on the interior surface of these amphitheatres, being
notably downward from the exterior plane, a contrary form to that which
terrestrial craters present. It follows, therefore, that the general
curvature at the bottom of these amphitheatres gives us fear of an
inferior diameter to that of the moon."

"What is the reason of this special arrangement?" asked Nicholl.

"It is not known," answered Barbicane.

"How splendidly it shines!" said Michel. "I think it would be difficult
to see a more beautiful spectacle!"

"What should you say, then," answered Barbicane, "if the chances of our
journey should take us towards the southern hemisphere?"

"Well, I should say it is finer still," replied Michel Ardan.

At that moment the projectile hung right over the amphitheatre. The
circumference of Copernicus formed an almost perfect circle, and its
steep ramparts were clearly defined. A second circular inclosure could
even be distinguished. A grey plain of wild aspect spread around on
which every relief appeared yellow. At the bottom of the amphitheatre,
as if in a jewel-case, sparkled for one instant two or three eruptive
cones like enormous dazzling gems. Towards the north the sides of the
crater were lowered into a depression which would probably have given
access to the interior of the crater.

As they passed above the surrounding plain Barbicane was able to note a
large number of mountains of slight importance, amongst others a little
circular mountain called "Gay-Lussac," more than twenty-three kilometres
wide. Towards the south the plain was very flat, without one elevation
or projection of the soil. Towards the north, on the contrary, as far as
the place where it borders on the Ocean of Tempests, it was like a
liquid surface agitated by a storm, of which the hills and hollows
formed a succession of waves suddenly coagulated. Over the whole of
this, and in all directions, ran the luminous trails which converged to
the summit of Copernicus. Some had a width of thirty kilometres over a
length that could not be estimated.

The travellers discussed the origin of these strange rays, but they
could not determine their nature any better than terrestrial observers.

"Why," said Nicholl, "may not these rays be simply the spurs of the
mountains reflecting the light of the sun more vividly?"

"No," answered Barbicane, "if it were so in certain conditions of the
moon they would throw shadows, which they do not."

In fact, these rays only appear when the sun is in opposition with the
moon, and they disappear as soon as its rays become oblique.

"But what explanation of these trails of light have been imagined?"
asked Michel, "for I cannot believe that _savants_ would ever stop short
for want of explanation."

"Yes," answered Barbicane, "Herschel has uttered an opinion, but he does
not affirm it."

"Never mind; what is his opinion?"

"He thought that these rays must be streams of cold lava which shone
when the sun struck them normally."

"That may be true, but nothing is less certain. However, if we pass
nearer to Tycho we shall be in a better position to find out the cause
of this radiation."

"What do you think that plain is like, seen from the height we are at?"
asked Michel.

"I don't know," answered Nicholl.

"Well, with all these pieces of lava, sharpened like spindles, it looks
like 'an immense game of spilikins,' thrown down pell-mell. We only want
a hook to draw them up."

"Be serious for once in your life," said Barbicane.

"I will be serious," replied Michel tranquilly, "and instead of
spilikins let us say they are bones. This plain would then be only an
immense cemetery upon which would repose the immortal remains of a
thousand distinct generations. Do you like that comparison better?"

"One is as good as the other," answered Barbicane.

"The devil! You are difficult to please," replied Michel.

"My worthy friend," resumed the prosaic Barbicane, "it does not matter
what it looks like when we don't know what it is."

"A good answer," exclaimed Michel; "that will teach me to argue with
_savants_."

In the meantime the projectile went with almost uniform speed round the
lunar disc. It may be easily imagined that the travellers did not dream
of taking a minute's rest. A fresh landscape lay before their eyes every
instant. About half-past one in the morning they caught a glimpse of the
summit of another mountain. Barbicane consulted his map, and recognised
Eratosthenes.

It was a circular mountain 4,500 metres high, one of those amphitheatres
so numerous upon the satellite. Barbicane informed his friends of
Kepler's singular opinion upon the formation of these circles.
According to the celebrated mathematician, these crateriform cavities
had been dug out by the hand of man.

"What for?" asked Nicholl.

"In order to preserve themselves from the ardour of the solar rays,
which strike the moon during fifteen consecutive days."

"The Selenites were not fools!" said Michel.

"It was a singular idea!" answered Nicholl. "But it is probable that
Kepler did not know the real dimensions of these circles, for digging
them would have been giants' labour, impracticable for Selenites."

"Why so, if the weight on the surface of the moon is six times less than
upon the surface of the earth?" said Michel.

"But if the Selenites are six times smaller?" replied Nicholl.

"And if there are no Selenites?" added Barbicane, which terminated the
discussion.

Eratosthenes soon disappeared from the horizon without the projectile
having been sufficiently near it to allow a rigorous observation. This
mountain separated the Apennines from the Carpathians.

In lunar orography, several chains of mountains have been distinguished
which are principally distributed over the northern hemisphere. Some,
however, occupy certain portions of the southern hemisphere.

The following is a list of these different chains, with their latitudes
and the height of their highest summits:--

                        deg.   deg.       metres.
    Mounts Doerfel       84 to  0 S. lat.  7,603
      "    Leibnitz      65 "   0   "      7,600
      "    Rook          20 "  30   "      1,600
      "    Altai         17 "  28   "      4,047
      "    Cordilleras   10 "  20   "      3,898
      "    Pyrenees       8 "  18   "      3,631
      "    Oural          5 "  13   "        838
      "    Alembert       4 "  10   "      5,847
      "    Hoemus         8 "  21 N. lat.  2,021
      "    Carpathians   15 "  19   "      1,939
      "    Apennines     14 "  27   "      5,501
      "    Taurus        21 "  28   "      2,746
      "    Riphees       25 "  33   "      4,171
      "    Hercynians    17 "  29   "      1,170
      "    Caucasia      32 "  41   "      5,567
      "    Alps          42 "  49   "      3,617

The most important of these different chains is that of the Apennines,
the development of which extends 150 leagues, and is yet inferior to
that of the great orographical movements of the earth. The Apennines run
along the eastern border of the Sea of Rains, and are continued on the
north by the Carpathians, the profile of which measures about 100
leagues.

The travellers could only catch a glimpse of the summit of these
Apennines which lie between west long. 10° and east long. 16°; but the
chain of the Carpathians was visible from 18° to 30° east long., and
they could see how they were distributed.

One hypothesis seemed to them very justifiable. Seeing that this chain
of the Carpathians was here and there circular in form and with high
peaks, they concluded that it anciently formed important amphitheatres.
These mountainous circles must have been broken up by the vast cataclysm
to which the Sea of Rains was due. These Carpathians looked then what
the amphitheatres of Purbach, Arzachel, and Ptolemy would if some
cataclysm were to throw down their left ramparts and transform them into
continuous chains. They present an average height of 3,200 metres, a
height comparable to certain of the Pyrenees. Their southern slopes fall
straight into the immense Sea of Rains.

About 2 a.m. Barbicane was at the altitude of the 20th lunar parallel,
not far from that little mountain, 1,559 metres high, which bears the
name of Pythias. The distance from the projectile to the moon was only
1,200 kilometres, brought by means of telescopes to two and a half
leagues.

The "Mare Imbrium" lay before the eyes of the travellers like an immense
depression of which the details were not very distinct. Near them on the
left rose Mount Lambert, the altitude of which is estimated at 1,813
metres, and farther on, upon the borders of the Ocean of Tempests, in
north lat. 23° and east long. 29°, rose the shining mountain of Euler.
This mountain, which rises only 1,815 metres above the lunar surface,
has been the object of an interesting work by the astronomer Schroeter.
This _savant_, trying to find out the origin of the lunar mountains,
asked himself whether the volume of the crater always looked equal to
the volume of the ramparts that formed it. Now this he found to be
generally the case, and he hence concluded that a single eruption of
volcanic matter had sufficed to form these ramparts, for successive
eruptions would have destroyed the connection. Mount Euler alone was an
exception to this general law, and it must have taken several successive
eruptions to form it, for the volume of its cavity is double that of its
inclosure.

All these hypotheses were allowable to terrestrial observers whose
instruments were incomplete; but Barbicane was no longer contented to
accept them, and seeing that his projectile drew regularly nearer the
lunar disc he did not despair of ultimately reaching it, or at least of
finding out the secrets of its formation.




CHAPTER XIII.

LUNAR LANDSCAPES.


At half-past two in the morning the bullet was over the 30th lunar
parallel at an effective distance of 1,000 kilometres, reduced by the
optical instruments to ten. It still seemed impossible that it could
reach any point on the disc. Its movement of translation, relatively
slow, was inexplicable to President Barbicane. At that distance from the
moon it ought to have been fast in order to maintain it against the
power of attraction. The reason of that phenomenon was also
inexplicable; besides, time was wanting to seek for the cause. The
reliefs on the lunar surface flew beneath their eyes, and they did not
want to lose a single detail.

The disc appeared through the telescopes at a distance of two and a half
leagues. If an aëronaut were taken up that distance from the earth, what
would he distinguish upon its surface? No one can tell, as the highest
ascensions have not exceeded 8,000 metres.

The following, however, is an exact description of what Barbicane and
his companions saw from that height:--

Large patches of different colours appeared on the disc. Selenographers
do not agree about their nature. They are quite distinct from each
other. Julius Schmidt is of opinion that if the terrestrial oceans were
dried up, a Selenite observer could only tell the difference between the
terrestrial oceans and continental plains by patches of colour as
distinctly varied as those which a terrestrial observer sees upon the
moon. According to him, the colour common to the vast plains, known
under the name of "seas," is dark grey, intermingled with green and
brown. Some of the large craters are coloured in the same way.

Barbicane knew this opinion of the German selenographer; it is shared by
Messrs. Boeer and Moedler. He noticed that they were right, whilst
certain astronomers, who only allow grey colouring on the surface of the
moon, are wrong. In certain places the green colour was very vivid;
according to Julius Schmidt, it is so in the Seas of Serenity and
Humours. Barbicane likewise remarked the wide craters with no interior
cones, which are of a bluish colour, analogous to that of fresh-polished
sheets of steel. These colours really belonged to the lunar disc, and
did not result, as certain astronomers think, either from some
imperfection in the object-glasses of the telescopes or the
interposition of the terrestrial atmosphere. Barbicane had no longer any
doubt about it. He was looking at it through the void, and could not
commit any optical error. He considered that the existence of this
different colouring was proved to science. Now were the green shades
owing to tropical vegetation, kept up by a low and dense atmosphere? He
could not yet be certain.

Farther on he noticed a reddish tinge, quite sufficiently distinct. A
similar colour had already been observed upon the bottom of an isolated
inclosure, known under the name of the Lichtenberg Amphitheatre, which
is situated near the Hercynian Mountains, on the border of the moon. But
he could not make out its nature.

He was not more fortunate about another peculiarity of the disc, for he
could not find out its cause. The peculiarity was the following one:--

Michel Ardan was watching near the president when he remarked some long
white lines brilliantly lighted up by the direct rays of the sun. It was
a succession of luminous furrows, very different from the radiation that
Copernicus had presented. They ran in parallel lines.

Michel, with his usual readiness, exclaimed--

"Why, there are cultivated fields!"

"Cultivated fields!" repeated Nicholl, shrugging his shoulders.

"Ploughed fields, at all events," replied Michel Ardan. "But what
ploughmen these Selenites must be, and what gigantic oxen they must
harness to their ploughs, to make such furrows!"

"They are not furrows, they are crevices!"

"Crevices let them be," answered Michel with docility. "Only what do you
mean by crevices in the world of science?" Barbicane soon told his
companions all he knew about lunar crevices. He knew that they were
furrows observed upon all the non-mountainous parts of the lunar disc;
that these furrows, generally isolated, were from four to five leagues
only; that their width varies from 1,000 to 1,500 metres, and their
edges are rigorously parallel. But he knew nothing more about their
formation or their nature.

Barbicane watched these furrows through his telescope very attentively.
He noticed that their banks were exceedingly steep. They were long
parallel ramparts; with a little imagination they might be taken for
long lines of fortifications raised by Selenite engineers.

Some of these furrows were as straight as if they had been cut by line,
others were slightly curved through with edges still parallel. Some
crossed each other. Some crossed craters. Some furrowed the circular
cavities, such as Posidonius or Petavius. Some crossed the seas, notably
the Sea of Serenity.

These accidents of Nature had naturally exercised the imagination of
terrestrial astronomers. The earliest observations did not discover
these furrows. Neither Hevelius, Cassini, La Hire, nor Herschel seems to
have known them. It was Schroeter who in 1789 first attracted the
attention of _savants_ to them. Others followed who studied them, such
as Pastorff, Gruithuysen, Boeer, and Moedler. At present there are
seventy-six; but though they have been counted, their nature has not yet
been determined. They are not fortifications certainly, anymore than
they are beds of dried-up rivers, for water so light on the surface of
the moon could not have dug such ditches, and there furrows often cross
craters at a great elevation.

It must, however, be acknowledged that Michel Ardan had an idea, and
that, without knowing it, he shared it with Julius Schmidt.

"Why," said he, "may not these inexplicable appearances be simply
phenomena of vegetation?"

"In what way do you mean?" asked Barbicane.

"Now do not be angry, worthy president," answered Michel, "but may not
these black lines be regular rows of trees?"

"Do you want to find some vegetation?" said Barbicane.

"I want to explain what you scientific men do not explain! My hypothesis
will at least explain why these furrows disappear, or seem to disappear,
at regular epochs."

"Why should they?"

"Because trees might become invisible when they lose their leaves, and
visible when they grow again."

"Your explanation is ingenious, old fellow," answered Barbicane, "but it
cannot be admitted."

"Why?"

"Because it cannot be said to be any season on the surface of the moon,
and, consequently, the phenomena of vegetation on the surface of the
moon cannot be produced."

In fact, the slight obliquity of the lunar axis keeps the sun there at
an almost equal altitude under every latitude. Above the equatorial
regions the radiant orb almost invariably occupies the zenith, and
hardly passes the limit of the horizon in the polar regions. Therefore,
in each region, according to its position, there reigns perpetual
spring, summer, autumn, or winter, as in the planet Jupiter, whose axis
is also slightly inclined upon its orbit.

The origin of these furrows is a difficult question to solve. They are
certainly posterior to the formation of the craters and amphitheatres,
for several have crossed them, and broken their circular ramparts. It
may be that they are contemporary with the latest geographical epochs,
and are only owing to the expansion of natural forces.

In the meantime the projectile had reached the altitude of the 40th
degree of lunar latitude at a distance that could not be greater than
800 kilometres. Objects appeared through the telescopes at two leagues
only. At this point rose under their feet the Helicon, 505 metres high,
and on the left were the mediocre heights, which inclose a small portion
of the Sea of Rains under the name of the Gulf of Iris.

The terrestrial atmosphere ought to be 170 times more transparent than
it is in order to allow astronomers to make complete observations on the
surface of the moon. But in the void the projectile was moving in no
fluid lay between the eye of the observer and the object observed. What
is more, Barbicane was at a less distance than the most powerful
telescopes, even that of Lord Rosse or the one on the Rocky Mountains,
could give. It was, therefore, in circumstances highly favourable for
solving the great question of the habitability of the moon. Yet the
solution of this question escaped him still. He could only distinguish
the deserted beds of the immense plains, and, towards the north, arid
mountains. No labour betrayed the hand of man. No ruin indicated his
passage. No agglomeration of animals indicated that life was developed
there, even in an inferior degree. There was no movement anywhere, no
appearance of vegetation anywhere. Of the three kingdoms represented on
the terrestrial globe, one only was represented on that of the
moon--viz., the mineral kingdom.

"So," said Michel Ardan, looking rather put out, "there is nobody after
all."

"No," answered Nicholl; "we have seen neither man, animal, nor tree as
yet. After all, if the atmosphere has taken refuge at the bottom of
cavities, in the interior of the amphitheatres, or even on the opposite
face of the moon, we cannot decide the question."

"Besides," added Barbicane, "even for the most piercing sight a man is
not visible at a distance of more than four miles. Therefore if there
are any Selenites they can see our projectile, but we cannot see them."

About 11 a.m., at the altitude of the 50th parallel, the distance was
reduced to 300 miles. On the left rose the capricious outlines of a
chain of mountains, outlined in full light. Towards the right, on the
contrary, was a large black hole like a vast dark and bottomless well
bored in the lunar soil.

That hole was the Black Lake, or Pluto, a deep circle from which the
earth could be conveniently studied between the last quarter and the new
moon, when the shadows are thrown from west to east.

This black colour is rarely met with on the surface of the satellite. It
has, as yet, only been seen in the depths of the circle of Endymion, to
the east of the Cold Sea, in the northern hemisphere, and at the bottom
of the circle of Grimaldi upon the equator towards the eastern border of
the orb.

Pluto is a circular mountain, situated in north lat. 51° and east long.
9°. Its circle is fifty miles long and thirty wide. Barbicane regretted
not passing perpendicularly over this vast opening. There was an abyss
to see, perhaps some mysterious phenomenon to become acquainted with.
But the course of the projectile could not be guided. There was nothing
to do but submit. A balloon could not be guided, much less a projectile
when you are inside.

About 5 a.m. the northern limit of the Sea of Rains was at last passed.
Mounts La Condamine and Fontenelle remained, the one on the left, the
other on the right. That part of the disc, starting from the 60th
degree, became absolutely mountainous. The telescopes brought it to
within one league, an inferior distance to that between the summit of
Mont Blanc and the sea level. All this region was bristling with peaks
and amphitheatres. Mount Philolaus rose about the 70th degree to a
height of 3,700 metres, opening an elliptical crater sixteen leagues
long and four wide.

Then the disc, seen from that distance, presented an exceedingly strange
aspect. The landscapes were very different to earthly ones, and also
very inferior.

The moon having no atmosphere, this absence of vaporous covering had
consequences already pointed out. There is no twilight on its surface,
night following day and day following night, with the suddenness of a
lamp extinguished or lighted in profound darkness. There is no
transition from cold to heat: the temperature falls in one instant from
boiling water heat to the cold of space.

Another consequence of this absence of air is the following:--Absolute
darkness reigns where the sun's rays do not penetrate. What is called
diffused light upon the earth, the luminous matter that the air holds
in suspension, which creates twilights and dawns, which produces
shadows, penumbrae, and all the magic of the chiaro-oscuro, does not
exist upon the moon. Hence the harshness of contrasts that only admit
two colours, black and white. If a Selenite shades his eyes from the
solar rays the sky appears absolutely dark, and the stars shine as in
the darkest nights.

The impression produced on Barbicane and his two friends by this strange
state of things may well be imagined. They did not know how to use their
eyes. They could no longer seize the respective distances in
perspective. A lunar landscape, which does not soften the phenomenon of
the chiaro-oscuro, could not be painted by a landscape-painter of the
earth. It would be nothing but blots of ink upon white paper.

This aspect of things did not alter even when the projectile, then at
the altitude of the 80th degree, was only separated from the moon by a
distance of fifty miles, not even when, at 5 a.m., it passed at less
than twenty-five miles from the mountain of Gioja, a distance which the
telescopes reduced to half-a-mile. It seemed as if they could have
touched the moon. It appeared impossible that before long the projectile
should not knock against it, if only at the North Pole, where the
brilliant mountains were clearly outlined against the dark background of
the sky. Michel Ardan wanted to open one of the port-lights and jump
upon the lunar surface. What was a fall of twelve leagues? He thought
nothing of that. It would, however, have been a useless attempt, for if
the projectile was not going to reach any point on the satellite, Michel
would have been hurled along by its movement, and not have reached it
either.

At that moment, 6 a.m., the lunar pole appeared. Only half the disc,
brilliantly lighted, appeared to the travellers, whilst the other half
disappeared in the darkness. The projectile suddenly passed the line of
demarcation between intense light and absolute darkness, and was
suddenly plunged into the profoundest night.




CHAPTER XIV.

A NIGHT OF THREE HUNDRED AND FIFTY-FOUR HOURS AND A HALF.


At the moment this phenomenon took place the projectile was grazing the
moon's North Pole, at less that twenty-five miles' distance. A few
seconds had, therefore, sufficed to plunge it into the absolute darkness
of space. The transition had taken place so rapidly, without gradations
of light or attenuation of the luminous undulations, that the orb seemed
to have been blown out by a powerful gust.

"The moon has melted, disappeared!" cried Michel Ardan, wonder-stricken.

In fact, no ray of light or shade had appeared on the disc, formerly so
brilliant. The obscurity was complete, and rendered deeper still by the
shining of the stars. It was the darkness of lunar night, which lasts
354 hours and a half on each point of the disc--a long night, the result
of the equality of the movements of translation and rotation of the
moon, the one upon herself, the other round the earth. The projectile in
the satellite's cone of shadow was no longer under the action of the
solar rays.

In the interior darkness was, therefore, complete. The travellers could
no longer see one another. Hence came the necessity to lighten this
darkness. However desirous Barbicane might be to economise the gas, of
which he had so small a reserve, he was obliged to have recourse to it
for artificial light--an expensive brilliancy which the sun then
refused.

"The devil take the radiant orb!" cried Michel Ardan; "he is going to
force us to spend our gas instead of giving us his rays for nothing."

"We must not accuse the sun," said Nicholl. "It is not his fault, it is
the moon's fault for coming and putting herself like a screen between us
and him."

"It's the sun!" said Michel again.

"It's the moon!" retorted Nicholl.

An idle dispute began, which Barbicane put an end to by saying--

"My friends, it is neither the fault of the sun nor the moon. It is the
projectile's fault for deviating from its course instead of rigorously
following it. Or, to be juster still, it is the fault of that
unfortunate asteroid which so deplorably altered our first direction."

"Good!" answered Michel Ardan; "as that business is settled let us have
our breakfast. After a night entirely passed in making observations, we
want something to set us to rights a little."

This proposition met with no contradiction. Michel prepared the repast
in a few minutes. But they ate for the sake of eating. They drank
without toasts or hurrahs. The bold travellers, borne away into the
darkness of space without their accustomed escort of rays, felt a vague
uneasiness invade their hearts. The "farouche" darkness, so dear to the
pen of Victor Hugo, surrounded them on all sides.

In the meantime they talked about this interminable night, 354 hours, or
nearly 15 days, long, which physical laws have imposed upon the
inhabitants of the moon. Barbicane gave his friends some explanation of
the causes and consequences of this curious phenomenon.

"Curious it certainly is," said he, "for if each hemisphere of the moon
is deprived of solar light for fifteen days, the one over which we are
moving at this moment does not even enjoy, during its long night, a
sight of the brilliantly-lighted earth. In a word, there is no moon,
applying that qualification to our spheroid, except for one side of the
disc. Now, if it was the same upon earth--if, for example, Europe never
saw the moon, and she was only visible at the antipodes--you can figure
to yourselves the astonishment of a European on arriving in Australia."

"They would make the voyage for nothing but to go and see the moon,"
answered Michel.

"Well," resumed Barbicane, "that astonishment is reserved to the
Selenite who inhabits the opposite side of the moon to the earth, a side
for ever invisible to our fellow-beings of the terrestrial globe."

"And which we should have seen," added Nicholl, "if we had arrived here
at the epoch when the moon is new--that is to say, a fortnight later."

"To make amends," resumed Barbicane, "an inhabitant of the visible face
is singularly favoured by Nature to the detriment on the invisible face.
The latter, as you see, has dark nights of 354 hours long, without a ray
of light to penetrate the obscurity. The other, on the contrary, when
the sun, which has lighted him for a fortnight, sets under the horizon,
sees on the opposite horizon a splendid orb rise. It is the earth,
thirteen times larger than that moon which we know--the earth, which is
developed to a diameter of two degrees, and which sheds a light thirteen
times greater, which no atmosphere qualifies; the earth, which only
disappears when the sun reappears."

"A fine sentence," said Michel Ardan; "rather academical perhaps."

"It follows," resumed Barbicane, nowise put out, "that the visible face
of the disc must be very agreeable to inhabit, as it is always lighted
by the sun or the moon."

"But," said Nicholl, "this advantage must be quite compensated by the
unbearable heat which this light must cause."

"This inconvenience is the same under two faces, for the light reflected
by the earth is evidently deprived of heat. However, this invisible face
is still more deprived of heat than the visible face. I say that for
you, Nicholl; Michel would probably not understand."

"Thank you," said Michel.

"In fact," resumed Barbicane, "when the invisible face receives the
solar light and heat the moon is new--that is to say, that she is in
conjunction, that she is situated between the sun and the earth. She is
then, on account of the situation which she occupies in opposition when
she is full, nearer the sun by the double of her distance from the
earth. Now this distance may be estimated at the two-hundredth part of
that which separates the sun and the earth; or, in round numbers, at two
hundred thousand leagues. Therefore this visible face is nearer the sun
by two hundred thousand leagues when it receives his rays."

"Quite right," replied Nicholl.

"Whilst--" resumed Barbicane.

"Allow me," said Michel, interrupting his grave companion.

"What do you want?"

"I want to go on with the explanation."

"Why?"

"To prove that I have understood."

"Go on, then," said Barbicane, smiling.

"Whilst," said Michel, imitating the tone and gestures of President
Barbicane, "when the visible face of the moon is lighted by the sun the
moon is full--that is to say, situated with regard to the earth the
opposite to the sun. The distance which separates it from the radiant
orb is then increased in round numbers by 200,000 leagues, and the heat
which it receives must be rather less."

"Well done!" exclaimed Barbicane. "Do you know, Michel, for an artist
you are intelligent."

"Yes," answered Michel carelessly, "we are all intelligent on the
Boulevard des Italiens."

Barbicane shook hands gravely with his amiable companion, and went on
enumerating the few advantages reserved to the inhabitants of the
visible face.

Amongst others he quoted the observations of the sun's eclipses, which
can only be seen from one side of the lunar disc, because the moon must
be in opposition before they can take place. These eclipses, caused by
the interposition of the earth between the sun and the moon, may last
two hours, during which, on account of the rays refracted by its
atmosphere, the terrestrial globe can only appear like a black spot upon
the sun.

"Then," said Nicholl, "the invisible hemisphere is very ill-treated by
Nature."

"Yes," answered Barbicane, "but not the whole of it. By a certain
movement of liberation, a sort of balancing on its centre, the moon
presents more than the half of her disc to the earth. She is like a
pendulum, the centre of gravity of which is towards the terrestrial
globe, and which oscillates regularly. Whence comes that oscillation?
Because her movement of rotation on her axis is animated with uniform
velocity, whilst her movement of translation, following an elliptical
orb round the earth, is not. At the perigee the velocity of translation
is greater, and the moon shows a certain portion of her western border.
At her apogee the velocity of rotation is greater, and a morsel of her
eastern border appears. It is a strip of about eight degrees, which
appears sometimes on the west, sometimes on the east. The result is,
therefore, that of a thousand parts the moon shows five hundred and
sixty-nine."

"No matter," answered Michel; "if we ever become Selenites, we will
inhabit the visible face. I like light."

"Unless," replied Nicholl, "the atmosphere should be condensed on the
other side, as certain astronomers pretend."

"That is a consideration," answered Michel simply.

In the meantime breakfast was concluded, and the observers resumed their
posts. They tried to see through the dark port-light by putting out all
light in the projectile. But not one luminous atom penetrated the
obscurity.

One inexplicable fact preoccupied Barbicane. How was it that though the
projectile had been so near the moon, within a distance of twenty-five
miles, it had not fallen upon her? If its speed had been enormous, he
would have understood why it had not fallen. But with a relatively
slight speed the resistance to lunar attraction could not be explained.
Was the projectile under the influence of some strange force? Did some
body maintain it in the ether? It was henceforth evident that it would
not touch any point upon the moon. Where was it going? Was it going
farther away from or nearer to the disc? Was it carried along in the
gloom across infinitude? How were they to know, how calculate in the
dark? All these questions made Barbicane anxious, but he could not solve
them.

In fact, the invisible orb was there, perhaps, at a distance of some
leagues only, but neither his companions nor he could any longer see it.
If any noise was made on its surface they could not hear it. The air,
that vehicle of transmission, was wanting to convey to them the groans
of that moon which the Arabian legends make "a man already half-granite,
but still palpitating."

It will be agreed that it was enough to exasperate the most patient
observers. It was precisely the unknown hemisphere that was hidden from
their eyes. That face which a fortnight sooner or a fortnight later had
been, or would be, splendidly lighted up by the solar rays, was then
lost in absolute darkness. Where would the projectile be in another
fortnight? Where would the hazards of attraction have taken it? Who
could say?

It is generally admitted that the invisible hemisphere of the moon is,
by its constitution, absolutely similar to the visible hemisphere.
One-seventh of it is seen in those movements of libration Barbicane
spoke of. Now upon the surface seen there were only plains and
mountains, amphitheatres and craters, like those on the maps. They could
there imagine the same arid and dead nature. And yet, supposing the
atmosphere to have taken refuge upon that face? Suppose that with the
air water had given life to these regenerated continents? Suppose that
vegetation still persists there? Suppose that animals people these
continents and seas? Suppose that man still lives under those conditions
of habitability? How many questions there were it would have been
interesting to solve! What solutions might have been drawn from the
contemplation of that hemisphere! What delight it would have been to
glance at that world which no human eye has seen!

The disappointment of the travellers in the midst of this darkness may
be imagined. All observation of the lunar disc was prevented. The
constellations alone were visible, and it must be acknowledged that no
astronomers, neither Faye, Chacornac, nor the Secchi, had ever been in
such favourable conditions to observe them.

In fact, nothing could equal the splendour of this starry world, bathed
in limpid ether. Diamonds set in the celestial vault threw out superb
flames. One look could take in the firmament from the Southern Cross to
the North Star, those two constellations which will in 12,000 years, on
account of the succession of equinoxes, resign their _rôles_ of polar
stars, the one to Canopus in the southern hemisphere, the other to Wega
in the northern. Imagination lost itself in this sublime infinitude,
amidst which the projectile was moving like a new star created by the
hand of man. From natural causes these constellations shone with a soft
lustre; they did not twinkle because there was no atmosphere to
intervene with its strata unequally dense, and of different degrees of
humidity, which causes this scintillation.

The travellers long watched the constellated firmament, upon which the
vast screen of the moon made an enormous black hole. But a painful
sensation at length drew them from their contemplation. This was an
intense cold, which soon covered the glasses of the port-lights with a
thick coating of ice. The sun no longer warmed the projectile with his
rays, and it gradually lost the heat stored up in its walls. This heat
was by radiation rapidly evaporated into space, and a considerable
lowering of the temperature was the result. The interior humidity was
changed into ice by contact with the window-panes, and prevented all
observation.

Nicholl, consulting the thermometer, said that it had fallen to 17°
(centigrade) below zero (1° Fahr). Therefore, notwithstanding every
reason for being economical, Barbicane was obliged to seek heat as well
as light from gas. The low temperature of the bullet was no longer
bearable. Its occupants would have been frozen to death.

"We will not complain about the monotony of the journey," said Michel
Ardan. "What variety we have had, in temperature at all events! At times
we have been blinded with light, and saturated with heat like the
Indians of the Pampas! Now we are plunged into profound darkness amidst
boreal cold, like the Esquimaux of the pole! No, indeed! We have no
right to complain, and Nature has done many things in our honour!"

"But," asked Nicholl, "what is the exterior temperature?"

"Precisely that of planetary space," answered Barbicane.

"Then," resumed Michel Ardan, "would not this be an opportunity for
making that experiment we could not attempt when we were bathed in the
solar rays?"

"Now or never," answered Barbicane, "for we are usefully situated in
order to verify the temperature of space, and see whether the
calculations of Fourier or Pouillet are correct."

"Any way it is cold enough," said Michel. "Look at the interior humidity
condensing on the port-lights. If this fall continues the vapour of our
respiration will fall around us in snow."

"Let us get a thermometer," said Barbicane.

It will be readily seen that an ordinary thermometer would have given no
result under the circumstances in which it was going to be exposed. The
mercury would have frozen in its cup, for it does not keep liquid below
44° below zero. But Barbicane had provided himself with a spirit
thermometer, on the Walferdin system, which gives the minima of
excessively low temperature.

Before beginning the experiment this instrument was compared with an
ordinary thermometer, and Barbicane prepared to employ it.

"How shall we manage it?" asked Nicholl.

"Nothing is easier," answered Michel Ardan, who was never at a loss.
"Open the port-light rapidly, throw out the instrument; it will follow
the projectile with exemplary docility; a quarter of an hour after take
it in."

"With your hand?" asked Barbicane.

"With my hand," answered Michel.

"Well, then, my friend, do not try it," said Barbicane, "for the hand
you draw back will be only a stump, frozen and deformed by the frightful
cold."

"Really?"

"You would feel the sensation of a terrible burn, like one made with a
red-hot iron, for the same thing happens when heat is brutally
abstracted from our body as when it is inserted. Besides, I am not sure
that objects thrown out still follow us."

"Why?" said Nicholl.

"Because if we are passing through any atmosphere, however slightly
dense, these objects will be delayed. Now the darkness prevents us
verifying whether they still float around us. Therefore, in order not to
risk our thermometer, we will tie something to it, and so easily pull it
back into the interior."

Barbicane's advice was followed. Nicholl threw the instrument out of the
rapidly-opened port-light, holding it by a very short cord, so that it
could be rapidly drawn in. The window was only open one second, and yet
that one second was enough to allow the interior of the projectile to
become frightfully cold.

"_Mille diables!_" cried Michel Ardan, "it is cold enough here to freeze
white bears!"

Barbicane let half-an-hour go by, more than sufficient time to allow the
instrument to descend to the level of the temperature of space. The
thermometer was then rapidly drawn in.

Barbicane calculated the quantity of mercury spilt into the little phial
soldered to the lower part of the instrument, and said--

"One hundred and forty degrees centigrade below zero!" (218° Fahr.)

M. Pouillet was right, not Fourier. Such was the frightful temperature
of sidereal space! Such perhaps that of the lunar continents when the
orb of night loses by radiation all the heat which she absorbs during
the fifteen days of sunshine.




CHAPTER XV.

HYPERBOLA OR PARABOLA.


Our readers will probably be astonished that Barbicane and his
companions were so little occupied with the future in store for them in
their metal prison, carried along in the infinitude of ether. Instead of
asking themselves where they were going, they lost their time in making
experiments, just as if they had been comfortably installed in their
own studies.

It might be answered that men so strong-minded were above such
considerations, that such little things did not make them uneasy, and
that they had something else to do than to think about their future.

The truth is that they were not masters of their projectile--that they
could neither stop it nor alter its direction. A seaman can direct the
head of his ship as he pleases; an aëronaut can give his balloon
vertical movement. They, on the contrary, had no authority over their
vehicle. No manoeuvre was possible to them. Hence their not troubling
themselves, or "let things go" state of mind.

Where were they at that moment, 8 a.m. during that day called upon earth
the sixth of December? Certainly in the neighbourhood of the moon, and
even near enough for her to appear like a vast black screen upon the
firmament. As to the distance which separated them, it was impossible to
estimate it. The projectile, kept up by inexplicable forces, has grazed
the north pole of the satellite at less than twenty-five miles'
distance. But had that distance increased or diminished since they had
been in the cone of shadow? There was no landmark by which to estimate
either the direction or the velocity of the projectile. Perhaps it was
going rapidly away from the disc and would soon leave the pure shadow.
Perhaps, on the contrary, it was approaching it, and would before long
strike against some elevated peak in the invisible atmosphere, which
would have terminated the journey, doubtless to the detriment of the
travellers.

A discussion began upon this subject, and Michel Ardan, always rich in
explanations, gave out the opinion that the bullet, restrained by lunar
attraction, would end by falling on the moon like an aërolite on to the
surface of the terrestrial globe.

"In the first place," answered Barbicane, "all aërolites do not fall
upon the surface of the earth; only a small proportion do so. Therefore,
if we are aërolites it does not necessarily follow that we shall fall
upon the moon."

"Still," answered Michel, "if we get near enough--"

"Error," replied Barbicane. "Have you not seen shooting stars by
thousands in the sky at certain epochs?"

"Yes."

"Well, those stars, or rather corpuscles, only shine by rubbing against
the atmospheric strata. Now, if they pass through the atmosphere, they
pass at less than 16 miles from our globe, and yet they rarely fall. It
is the same with our projectile. It may approach very near the moon, and
yet not fall upon it."

"But then," asked Michel, "I am curious to know how our vehicle would
behave in space."

"I only see two hypotheses," answered Barbicane, after some minutes'
reflection.

"What are they?"

"The projectile has the choice between two mathematical curves, and it
will follow the one or the other according to the velocity with which it
is animated, and which I cannot now estimate."

"Yes, it will either describe a parabola or an hyperbola."

"Yes," answered Barbicane, "with some speed it will describe a parabola,
and with greater speed an hyperbola."

"I like those grand words!" exclaimed Michel Ardan. "I know at once what
you mean. And what is your parabola, if you please?"

"My friend," answered the captain, "a parabola is a conic section
arising from cutting a cone by a plane parallel to one of its sides."

"Oh!" said Michel in a satisfied tone.

"It is about the same trajectory that the bomb of a howitzer describes."

"Just so. And an hyperbola?" asked Michel.

"It is a curve formed by a section of a cone when the cutting plane
makes a greater angle with the base than the side of the cone makes."

"Is it possible?" exclaimed Michel Ardan in the most serious tone, as if
he had been informed of a grave event. "Then remember this, Captain
Nicholl, what I like in your definition of the hyperbola--I was going to
say of the hyperhumbug--is that it is still less easy to understand than
the word you pretend to define."

Nicholl and Barbicane paid no attention to Michel Ardan's jokes. They
had launched into a scientific discussion. They were eager about what
curve the projectile would take. One was for the hyperbola, the other
for the parabola. They gave each other reasons bristling with _x_'s.
Their arguments were presented in a language which made Michel Ardan
jump. The discussion was lively, and neither of the adversaries would
sacrifice his curve of predilection.

This scientific dispute was prolonged until Michel Ardan became
impatient, and said--

"I say, Messrs. Cosine, do leave off throwing your hyperbolas and
parabolas at one's head. I want to know the only interesting thing about
the business. We shall follow one or other of your curves. Very well.
But where will they take us to?"

"Nowhere," answered Nicholl.

"How nowhere?"

"Evidently they are unfinished curves, prolonged indefinitely!"

"Ah, _savants_! What does it matter about hyperbola or parabola if they
both carry us indefinitely into space?"

Barbicane and Nicholl could not help laughing. They cared for art for
its own sake. Never had more useless question been discussed at a more
inopportune moment. The fatal truth was that the projectile, whether
hyperbolically or parabolically carried along, would never strike
against either the earth or the moon.

What would become of these bold travellers in the most immediate future?
If they did not die of hunger or thirst, they would in a few days, when
gas failed them, die for want of air, if the cold had not killed them
first!

Still, although it was so important to economise gas, the excessive
lowness of the surrounding temperature forced them to consume a certain
quantity. They could not do without either its light or heat. Happily
the caloric developed by the Reiset and Regnault apparatus slightly
elevated the temperature of the projectile, and without spending much
they could raise it to a bearable degree.

In the meantime observation through the port-lights had become very
difficult. The steam inside the bullet condensed upon the panes and
froze immediately. They were obliged to destroy the opacity of the glass
by constant rubbing. However, they could record several phenomena of the
highest interest.

In fact, if the invisible disc had any atmosphere, the shooting stars
would be seen passing through it. If the projectile itself passed
through the fluid strata, might it not hear some noise echoed--a storm,
for instance, an avalanche, or a volcano in activity? Should they not
see the intense fulgurations of a burning mountain? Such facts,
carefully recorded, would have singularly elucidated the obscure
question of the lunar constitution. Thus Barbicane and Nicholl, standing
like astronomers at their port-lights, watched with scrupulous patience.

But until then the disc remained mute and dark. It did not answer the
multifarious interrogations of these ardent minds.

This provoked from Michel a reflection that seemed correct enough.

"If ever we recommence our journey, we shall do well to choose the epoch
when the moon is new."

"True," answered Nicholl, "that circumstance would have been more
favourable. I agree that the moon, bathed in sunlight, would not be
visible during the passage, but on the other hand the earth would be
full. And if we are dragged round the moon like we are now, we should
at least have the advantage of seeing the invisible disc magnificently
lighted up."

"Well said, Nicholl," replied Michel Ardan. "What do you think about it,
Barbicane?"

"I think this," answered the grave president: "if ever we recommence
this journey, we shall start at the same epoch, and under the same
circumstances. Suppose we had reached our goal, would it not have been
better to find the continents in full daylight instead of dark night?
Would not our first installation have been made under better
circumstances? Yes, evidently. As to the invisible side, we could have
visited that in our exploring expeditions on the lunar globe. So,
therefore, the time of the full moon was well chosen. But we ought to
have reached our goal, and in order to have reached it we ought not to
have deviated from our road."

"There is no answer to make to that," said Michel Ardan. "Yet we have
passed a fine opportunity for seeing the moon! Who knows whether the
inhabitants of the other planets are not more advanced than the
_savants_ of the earth on the subject of their satellites?"

The following answer might easily have been given to Michel Ardan's
remark:--Yes, other satellites, on account of their greater proximity,
have made the study of them easier. The inhabitants of Saturn, Jupiter,
and Uranus, if they exist, have been able to establish communication
with their moons much more easily. The four satellites of Jupiter
gravitate at a distance of 108,260 leagues, 172,200 leagues, 274,700
leagues, and 480,130 leagues. But these distances are reckoned from the
centre of the planet, and by taking away the radius, which is 17,000 to
18,000 leagues, it will be seen that the first satellite is at a much
less distance from the surface of Jupiter than the moon is from the
centre of the earth. Of the eight moons of Saturn, four are near. Diana
is 84,600 leagues off; Thetys, 62,966 leagues; Enceladus, 48,191
leagues; and lastly, Mimas is at an average distance of 34,500 leagues
only. Of the eighteen satellites of Uranus, the first, Ariel, is only
51,520 leagues from the planet.

Therefore, upon the surface of those three stars, an experiment
analogous to that of President Barbicane would have presented less
difficulties. If, therefore, their inhabitants have attempted the
enterprise, they have, perhaps, acquainted themselves with the
constitution of the half of the disc which their satellite hides
eternally from their eyes. But if they have never left their planet,
they do not know more about them than the astronomers of the earth.

In the meantime the bullet was describing in the darkness that
incalculable trajectory which no landmark allowed them to find out. Was
its direction altered either under the influence of lunar attraction or
under the action of some unknown orb? Barbicane could not tell. But a
change had taken place in the relative position of the vehicle, and
Barbicane became aware of it about 4 a.m.

The change consisted in this, that the bottom of the projectile was
turned towards the surface of the moon, and kept itself perpendicular
with its axis. The attraction or gravitation had caused this
modification. The heaviest part of the bullet inclined towards the
invisible disc exactly as if it had fallen towards it.

Was it falling then? Were the travellers at last about to reach their
desired goal? No. And the observation of one landmark, inexplicable in
itself, demonstrated to Barbicane that his projectile was not nearing
the moon, and that it was following an almost concentric curve.

This was a flash of light which Nicholl signalised all at once on the
limit of the horizon formed by the black disc. This point could not be
mistaken for a star. It was a reddish flame, which grew gradually
larger--an incontestable proof that the projectile was getting nearer
it, and not falling normally upon the surface of the satellite.

"A volcano! It is a volcano in activity!" exclaimed Nicholl--"an
eruption of the interior fires of the moon. That world, then, is not
quite extinguished."

"Yes, an eruption!" answered Barbicane, who studied the phenomenon
carefully through his night-glass. "What should it be if not a volcano?"

"But then," said Michel Ardan, "air is necessary to feed that
combustion, therefore there is some atmosphere on that part of the
moon."

"Perhaps so," answered Barbicane, "but not necessarily. A volcano, by
the decomposition of certain matters, can furnish itself with oxygen,
and so throw up flames into the void. It seems to me, too, that that
deflagration has the intensity and brilliancy of objects the combustion
of which is produced in pure oxygen. We must not be in a hurry to affirm
the existence of a lunar atmosphere."

The burning mountain was situated at the 45th degree of south latitude
on the invisible part of the disc. But to the great disappointment of
Barbicane the curve that the projectile described dragged it away from
the point signalised by the eruption, therefore he could not exactly
determine its nature. Half-an-hour after it had first been seen this
luminous point disappeared on the horizon. Still the authentication of
this phenomenon was a considerable fact in selenographic studies. It
proved that all heat had not yet disappeared from the interior of this
globe, and where heat exists, who may affirm that the vegetable kingdom,
or even the animal kingdom itself, has not until now resisted the
destructive influences? The existence of this volcano in eruption,
indisputably established by earthly _savants_, was favourable to the
theory of the habitability of the moon.

Barbicane became absorbed in reflection. He forgot himself in a mute
reverie, filled with the mysterious destinies of the lunar world. He was
trying to connect the facts observed up till then, when a fresh incident
recalled him suddenly to the reality.

This incident was more than a cosmic phenomenon; it was a threatening
danger, the consequences of which might be disastrous.

Suddenly in the midst of the ether, in the profound darkness, an
enormous mass had appeared. It was like a moon, but a burning moon of
almost unbearable brilliancy, outlined as it was on the total obscurity
of space. This mass, of a circular form, threw such light that it filled
the projectile. The faces of Barbicane, Nicholl, and Michel Ardan,
bathed in its white waves, looked spectral, livid, _blafard_, like the
appearance produced by the artificial light of alcohol impregnated with
salt.

"The devil!" cried Michel Ardan. "How hideous we are! Whatever is that
wretched moon?"

"It is a bolis," answered Barbicane.

"A bolis, on fire, in the void?"

"Yes."

This globe of fire was indeed a bolis. Barbicane was not mistaken. But
if these cosmic meteors, seen from the earth, present an inferior light
to that of the moon, here, in the dark ether, they shone magnificently.
These wandering bodies carry in themselves the principle of their own
incandescence. The surrounding air is not necessary to the deflagration.
And, indeed, if certain of these bodies pass through our atmosphere at
two or three leagues from the earth, others describe their trajectory at
a distance the atmosphere cannot reach. Some of these meteors are from
one to two miles wide, and move at a speed of forty miles a second,
following an inverse direction from the movement of the earth.

This shooting star suddenly appeared in the darkness at a distance of at
least 100 leagues, and measured, according to Barbicane's estimate, a
diameter of 2,000 metres. It moved with the speed of about thirty
leagues a minute. It cut across the route of the projectile, and would
reach it in a few minutes. As it approached it grew larger in an
enormous proportion.

If possible, let the situation of the travellers be imagined! It is
impossible to describe it. In spite of their courage, their
_sang-froid_, their carelessness of danger, they were mute, motionless,
with stiffened limbs, a prey to fearful terror. Their projectile, the
course of which they could not alter, was running straight on to this
burning mass, more intense than the open mouth of a furnace. They seemed
to be rushing towards an abyss of fire.

Barbicane seized the hands of his two companions, and all three looked
through their half-closed eyelids at the red-hot asteroid. If they still
thought at all, they must have given themselves up as lost!

Two minutes after the sudden appearance of the bolis, two centuries of
agony, the projectile seemed about to strike against it, when the ball
of fire burst like a bomb, but without making any noise in the void,
where sound, which is only the agitation of the strata of air, could not
be made.

Nicholl uttered a cry. His companions and he rushed to the port-lights.

What a spectacle! What pen could describe it, what palette would be rich
enough in colours to reproduce its magnificence?

It was like the opening of a crater, or the spreading of an immense
fire. Thousands of luminous fragments lit up space with their fires.
Every size, colour, and shade were there. There were yellow, red, green,
grey, a crown of multi-coloured fireworks. There only remained of the
enormous and terrible globe pieces carried in all directions, each an
asteroid in its turn, some shining like swords, some surrounded by white
vapour, others leaving behind them a trail of cosmic dust.

These incandescent blocks crossed each other, knocked against each
other, and were scattered into smaller fragments, of which some struck
the projectile. Its left window was even cracked by the violent shock.
It seemed to be floating in a shower of bullets, of which the least
could annihilate it in an instant.

The light which saturated the ether was of incomparable intensity, for
these asteroids dispersed it in every direction. At a certain moment it
was so bright that Michel dragged Barbicane and Nicholl to the window,
exclaiming--

"The invisible moon is at last visible!"

And all three, across the illumination, saw for a few seconds that
mysterious disc which the eye of man perceived for the first time.

What did they distinguish across that distance which they could not
estimate? Long bands across the disc, veritable clouds formed in a very
restricted atmospheric medium, from which emerged not only all the
mountains, but every relief of middling importance, amphitheatres,
yawning craters, such as exist on the visible face. Then immense tracts,
no longer arid plains, but veritable seas, oceans which reflected in
their liquid mirror all the dazzling magic of the fires of space.
Lastly, on the surface of the continents, vast dark masses, such as
immense forests would resemble under the rapid illumination of a flash
of lightning.

Was it an illusion, an error of the eyes, an optical deception? Could
they give a scientific affirmation to that observation so superficially
obtained? Dared they pronounce upon the question of its habitability
after so slight a glimpse of the invisible disc?

By degrees the fulgurations of space gradually died out, its accidental
brilliancy lessened, the asteroids fled away by their different
trajectories, and went out in the distance. The ether resumed its
habitual darkness; the stars, for one moment eclipsed, shone in the
firmament, and the disc, of which scarcely a glimpse had been caught,
was lost in the impenetrable night.




CHAPTER XVI.

THE SOUTHERN HEMISPHERE.


The projectile had just escaped a terrible danger, a danger quite
unforeseen. Who would have imagined such a meeting of asteroids? These
wandering bodies might prove serious perils to the travellers. They were
to them like so many rocks in the sea of ether, which, less fortunate
than navigators, they could not avoid. But did these adventurers of
space complain? No, as Nature had given them the splendid spectacle of a
cosmic meteor shining by formidable expansion, as this incomparable
display of fireworks, which no Ruggieri could imitate, had lighted for a
few seconds the invisible nimbus of the moon. During that rapid peep,
continents, seas, and forests had appeared to them. Then the atmosphere
did give there its life-giving particles? Questions still not solved,
eternally asked by American curiosity.

It was then 3.30 p.m. The bullet was still describing its curve round
the moon. Had its route again been modified by the meteor? It was to be
feared. The projectile ought, however to describe a curve imperturbably
determined by the laws of mechanics. Barbicane inclined to the opinion
that this curve would be a parabola and not an hyperbola. However, if
the parabola was admitted, the bullet ought soon to come out of the cone
of shadow thrown into the space on the opposite side to the sun. This
cone, in fact, is very narrow, the angular diameter of the moon is so
small compared to the diameter of the orb of day. Until now the
projectile had moved in profound darkness. Whatever its speed had
been--and it could not have been slight--its period of occultation
continued. That fact was evident, but perhaps that would not have been
the case in a rigidly parabolical course. This was a fresh problem which
tormented Barbicane's brain, veritably imprisoned as it was in a web of
the unknown which he could not disentangle.

Neither of the travellers thought of taking a minute's rest. Each
watched for some unexpected incident which should throw a new light on
their uranographic studies. About five o'clock Michel distributed to
them, by way of dinner, some morsels of bread and cold meat, which were
rapidly absorbed, whilst no one thought of leaving the port-light, the
panes of which were becoming incrusted under the condensation of vapour.

About 5.45 p.m., Nicholl, armed with his telescope, signalised upon the
southern border of the moon, and in the direction followed by the
projectile, a few brilliant points outlined against the dark screen of
the sky. They looked like a succession of sharp peaks with profiles in a
tremulous line. They were rather brilliant. The terminal line of the
moon looks the same when she is in one of her octants.

They could not be mistaken. There was no longer any question of a simple
meteor, of which that luminous line had neither the colour nor the
mobility, nor of a volcano in eruption. Barbicane did not hesitate to
declare what it was.

"The sun!" he exclaimed.

"What! the sun!" answered Nicholl and Michel Ardan.

"Yes, my friends, it is the radiant orb itself, lighting up the summit
of the mountains situated on the southern border of the moon. We are
evidently approaching the South Pole!"

"After having passed the North Pole," answered Michel. "Then we have
been all round our satellite."

"Yes, friend Michel."

"Then we have no more hyperbolas, no more parabolas, no more open curves
to fear!"

"No, but a closed curve."

"Which is called--"

"An ellipsis. Instead of being lost in the interplanetary spaces it is
possible that the projectile will describe an elliptical orbit round the
moon."

"Really!"

"And that it will become its satellite."

"Moon of the moon," exclaimed Michel Ardan.

"Only I must tell you, my worthy friend, that we are none the less lost
men on that account!"

"No, but in another and much pleasanter way!" answered the careless
Frenchman, with his most amiable smile.

President Barbicane was right. By describing this elliptical orbit the
projectile was going to gravitate eternally round the moon like a
sub-satellite. It was a new star added to the solar world, a microcosm
peopled by three inhabitants, whom want of air would kill before long.
Barbicane, therefore, could not rejoice at the position imposed on the
bullet by the double influence of the centripetal and centrifugal
forces. His companions and he were again going to see the visible face
of the disc. Perhaps their existence would last long enough for them to
perceive for the last time the full earth superbly lighted up by the
rays of the sun! Perhaps they might throw a last adieu to the globe they
were never more to see again! Then their projectile would be nothing but
an extinct mass, dead like those inert asteroids which circulate in the
ether. A single consolation remained to them: it was that of seeing the
darkness and returning to light, it was that of again entering the zones
bathed by solar irradiation!

In the meantime the mountains recognised by Barbicane stood out more and
more from the dark mass. They were Mounts Doerfel and Leibnitz, which
stand on the southern circumpolar region of the moon.

All the mountains of the visible hemisphere have been measured with
perfect exactitude. This perfection will, no doubt, seem astonishing,
and yet the hypsometric methods are rigorous. The altitude of the lunar
mountains may be no less exactly determined than that of the mountains
of the earth.

The method generally employed is that of measuring the shadow thrown by
the mountains, whilst taking into account the altitude of the sun at the
moment of observation. This method also allows the calculating of the
depth of craters and cavities on the moon. Galileo used it, and since
Messrs. Boeer and Moedler have employed it with the greatest success.

Another method, called the tangent radii, may also be used for measuring
lunar reliefs. It is applied at the moment when the mountains form
luminous points on the line of separation between light and darkness
which shine on the dark part of the disc. These luminous points are
produced by the solar rays above those which determine the limit of the
phase. Therefore the measure of the dark interval which the luminous
point and the luminous part of the phase leave between them gives
exactly the height of the point. But it will be seen that this method
can only be applied to the mountains near the line of separation of
darkness and light.

A third method consists in measuring the profile of the lunar mountains
outlined on the background by means of a micrometer; but it is only
applicable to the heights near the border of the orb.

In any case it will be remarked that this measurement of shadows,
intervals, or profiles can only be made when the solar rays strike the
moon obliquely in relation to the observer. When they strike her
directly--in a word, when she is full--all shadow is imperiously
banished from her disc, and observation is no longer possible.

Galileo, after recognising the existence of the lunar mountains, was the
first to employ the method of calculating their heights by the shadows
they throw. He attributed to them, as it has already been shown, an
average of 9,000 yards. Hevelius singularly reduced these figures, which
Riccioli, on the contrary, doubled. All these measures were exaggerated.
Herschel, with his more perfect instruments, approached nearer the
hypsometric truth. But it must be finally sought in the accounts of
modern observers.

Messrs. Boeer and Moedler, the most perfect selenographers in the whole
world, have measured 1,095 lunar mountains. It results from their
calculations that 6 of these mountains rise above 5,800 metres, and 22
above 4,800. The highest summit of the moon measures 7,603 metres; it
is, therefore, inferior to those of the earth, of which some are 1,000
yards higher. But one remark must be made. If the respective volumes of
the two orbs are compared the lunar mountains are relatively higher than
the terrestrial. The lunar ones form 1/70 of the diameter of the moon,
and the terrestrial only form 1/140 of the diameter of the earth. For a
terrestrial mountain to attain the relative proportions of a lunar
mountain, its perpendicular height ought to be 6-1/2 leagues. Now the
highest is not four miles.

Thus, then, to proceed by comparison, the chain of the Himalayas counts
three peaks higher than the lunar ones, Mount Everest, Kunchinjuga, and
Dwalagiri. Mounts Doerfel and Leibnitz, on the moon, are as high as
Jewahir in the same chain. Newton, Casatus, Curtius, Short, Tycho,
Clavius, Blancanus, Endymion, the principal summits of Caucasus and the
Apennines, are higher than Mont Blanc. The mountains equal to Mont Blanc
are Moret, Theophylus, and Catharnia; to Mount Rosa, Piccolomini,
Werner, and Harpalus; to Mount Cervin, Macrobus, Eratosthenes,
Albateque, and Delambre; to the Peak of Teneriffe, Bacon, Cysatus,
Philolaus, and the Alps; to Mount Perdu, in the Pyrenees, Roemer and
Boguslawski; to Etna, Hercules, Atlas, and Furnerius.

Such are the points of comparison that allow the appreciation of the
altitude of lunar mountains. Now the trajectory followed by the
projectile dragged it precisely towards that mountainous region of the
southern hemisphere where rise the finest specimens of lunar orography.




CHAPTER XVII.

TYCHO.


At 6 p.m. the projectile passed the South Pole at less than thirty
miles, a distance equal to that already reached at the North Pole. The
elliptical curve was, therefore, being rigorously described.

At that moment the travellers re-entered the beneficent sunshine. They
saw once more the stars moving slowly from east to west. The radiant orb
was saluted with a triple hurrah. With its light came also its heat,
which soon pierced the middle walls. The windows resumed their
accustomed transparency. Their "layer of ice" melted as if by
enchantment. The gas was immediately extinguished by way of economy. The
air apparatus alone was to consume its habitual quantity.

"Ah!" said Nicholl, "sunshine is good! How impatiently after their long
nights the Selenites must await the reappearance of the orb of day!"

"Yes," answered Michel Ardan, "imbibing, as it were, the brilliant
ether, light and heat, all life is in them."

At that moment the bottom of the projectile moved slightly from the
lunar surface in order to describe a rather long elliptical orbit. From
that point, if the earth had been full, Barbicane and his friends could
have seen it again. But, drowned in the sun's irradiation, it remained
absolutely invisible. Another spectacle attracted their eyes, presented
by the southern region of the moon, brought by the telescopes to within
half-a-mile. They left the port-lights no more, and noted all the
details of the strange continent.

Mounts Doerfel and Leibnitz formed two separate groups stretching nearly
to the South Pole; the former group extends from the Pole to the 84th
parallel on the eastern part of the orb; the second, starting from the
eastern border, stretches from the 65th degree of latitude to the Pole.

On their capriciously-formed ridge appeared dazzling sheets of light
like those signalised by Father Secchi. With more certainty than the
illustrious Roman astronomer, Barbicane was enabled to establish their
nature.

"It is snow," cried he.

"Snow?" echoed Nicholl.

"Yes, Nicholl, snow, the surface of which is profoundly frozen. Look how
it reflects the luminous rays. Cooled lava would not give so intense a
reflection. Therefore there is water and air upon the moon, as little as
you like, but the fact can no longer be contested."

No, it could not be, and if ever Barbicane saw the earth again his notes
would testify to this fact, important in selenographic observations.

These Mounts Doerfel and Leibnitz arose in the midst of plains of
moderate extent, bounded by an indefinite succession of amphitheatres
and circular ramparts. These two chains are the only ones which are met
with in the region of amphitheatres. Relatively they are not very
broken, and only throw out here and there some sharp peaks, the highest
of which measures 7,603 metres.

The projectile hung high above all this, and the relief disappeared in
the intense brilliancy of the disc.

Then reappeared to the eyes of the travellers that original aspect of
the lunar landscapes, raw in tone, without gradation of colours, only
white and black, for diffused light was wanting. Still the sight of this
desolate world was very curious on account of its very strangeness. They
were moving above this chaotic region as if carried along by the breath
of a tempest, seeing the summits fly under their feet, looking down the
cavities, climbing the ramparts, sounding the mysterious holes. But
there was no trace of vegetation, no appearance of cities, nothing but
stratifications, lava streams, polished like immense mirrors, which
reflect the solar rays with unbearable brilliancy. There was no
appearance of a living world, everything of a dead one, where the
avalanches rolling from the summit of the mountains rushed noiselessly.
They had plenty of movement, but noise was wanting still.

Barbicane established the fact, by reiterated observation, that the
reliefs on the borders of the disc, although they had been acted upon
by different forces to those of the central region, presented a uniform
conformation. There was the same circular aggregation, the same
accidents of ground. Still it might be supposed that their arrangements
were not completely analogous. In the centre the still malleable crust
of the moon suffered the double attraction of the moon and the earth
acting in inverse ways according to a radius prolonged from one to the
other. On the borders of the disc, on the contrary, the lunar attraction
has been, thus to say, perpendicular with the terrestrial attraction. It
seems, therefore, that the reliefs on the soil produced under these
conditions ought to have taken a different form. Yet they had not,
therefore the moon had found in herself alone the principle of her
formation and constitution. She owed nothing to foreign influences,
which justified the remarkable proposition of Arago's, "No action
exterior to the moon has contributed to the production of her relief."

However that may be in its actual condition, this world was the image of
death without it being possible to say that life had ever animated it.

Michel Ardan, however, thought he recognised a heap of ruins, to which
he drew Barbicane's attention. It was situated in about the 80th
parallel and 30° longitude. This heap of stones, pretty regularly made,
was in the shape of a vast fortress, overlooking one of those long
furrows which served as river-beds in ante-historical times. Not far off
rose to a height of 5,646 metres the circular mountain called Short,
equal to the Asiatic Caucasus. Michel Ardan, with his habitual ardour,
maintained "the evidences" of his fortress. Below he perceived the
dismantled ramparts of a town; here the arch of a portico, still intact;
there two or three columns lying on their side; farther on a succession
of archpieces, which must have supported the conduct of an aqueduct; in
another part the sunken pillars of a gigantic bridge run into the
thickest part of the furrow. He distinguished all that, but with so much
imagination in his eyes, through a telescope so fanciful, that his
observation cannot be relied upon. And yet who would affirm, who would
dare to say, that the amiable fellow had not really seen what his two
companions would not see?

The moments were too precious to be sacrificed to an idle discussion.
The Selenite city, whether real or pretended, had disappeared in the
distance. The projectile began to get farther away from the lunar disc,
and the details of the ground began to be lost in a confused jumble. The
reliefs, amphitheatres, craters, and plains alone remained, and still
showed their boundary-lines distinctly.

At that moment there stretched to the left one of the finest
amphitheatres in lunar orography. It was Newton, which Barbicane easily
recognised by referring to the _Mappa Selenographica_.

Newton is situated in exactly 77° south lat. and 16° east long. It forms
a circular crater, the ramparts of which, 7,264 metres high, seemed to
be inaccessible.

Barbicane made his companions notice that the height of that mountain
above the surrounding plain was far from being equal to the depth of its
crater. This enormous hole was beyond all measurement, and made a gloomy
abyss, the bottom of which the sun's rays could never reach. There,
according to Humboldt, utter darkness reigns, which the light of the sun
and the earth could not break. The mythologists would have made it with
justice hell's mouth.

"Newton," said Barbicane, "is the most perfect type of the circular
mountains, of which the earth possesses no specimen. They prove that the
formation of the moon by cooling was due to violent causes, for whilst
under the influence of interior fire the reliefs were thrown up to
considerable heights, the bottom dropped in, and became lower than the
lunar level."

"I do not say no," answered Michel Ardan.

A few minutes after having passed Newton the projectile stood directly
over the circular mountain of Moret. It also passed rather high above
the summits of Blancanus, and about 7.30 p.m. it reached the
amphitheatre of Clavius.

This circle, one of the most remarkable on the disc, is situated in
south lat. 58° and east long. 15°. Its height is estimated at 7,091
metres. The travellers at a distance of 200 miles, reduced to two by the
telescopes, could admire the arrangement of this vast crater.

"The terrestrial volcanoes," said Barbicane, "are only molehills
compared to the volcanoes of the moon. Measuring the ancient craters
formed by the first eruptions of Vesuvius and Etna, they are found to be
scarcely 6,000 metres wide. In France the circle of the Cantal measures
five miles; at Ceylon the circle of the island is forty miles, and is
considered the largest on the globe. What are these diameters compared
to that of Clavius, which we are over in this moment?"

"What is its width?" asked Nicholl.

"About seventy miles," answered Barbicane. "This amphitheatre is
certainly the largest on the moon, but many are fifty miles wide!"

"Ah, my friends," exclaimed Michel Ardan, "can you imagine what this
peaceful orb of night was once like? when these craters vomited torrents
of lava and stones, with clouds of smoke and sheets of flame? What a
prodigious spectacle formerly, and now what a falling off! This moon is
now only the meagre case of fireworks, of which the rockets, serpents,
suns, and wheels, after going off magnificently, only leave torn pieces
of cardboard. Who can tell the cause, reason, or justification of such
cataclysms?"

Barbicane did not listen to Michel Ardan. He was contemplating those
ramparts of Clavius, formed of wide mountains several leagues thick. At
the bottom of its immense cavity lay hundreds of small extinct craters,
making the soil like a sieve, and overlooked by a peak more than 15,000
feet high.

The plain around had a desolate aspect. Nothing so arid as these
reliefs, nothing so sad as these ruins of mountains, if so they may be
called, as those heaps of peaks and mountains encumbering the ground!
The satellite seemed to have been blown up in this place.

The projectile still went on, and the chaos was still the same. Circles,
craters, and mountains succeeded each other incessantly. No more plains
or seas--an interminable Switzerland or Norway. Lastly, in the centre of
the creviced region at its culminating point, the most splendid mountain
of the lunar disc, the dazzling Tycho, to which posterity still gives
the name of the illustrious Danish astronomer.

Whilst observing the full moon in a cloudless sky, there is no one who
has not remarked this brilliant point on the southern hemisphere. Michel
Ardan, to qualify it, employed all the metaphors his imagination could
furnish him with. To him Tycho was an ardent focus of light, a centre of
irradiation, a crater vomiting flames! It was the axle of a fiery wheel,
a sea-star encircling the disc with its silver tentacles, an immense eye
darting fire, a nimbo made for Pluto's head! It was a star hurled by the
hand of the Creator, and fallen upon the lunar surface!

Tycho forms such a luminous concentration that the inhabitants of the
earth can see it without a telescope, although they are at a distance of
100,000 leagues. It will, therefore, be readily imagined what its
intensity must have been in the eyes of observers placed at fifty
leagues only.

Across this pure ether its brilliancy was so unbearable that Barbicane
and his friends were obliged to blacken the object-glasses of their
telescopes with gas-smoke in order to support it. Then, mute, hardly
emitting a few admirative interjections, they looked and contemplated.
All their sentiments, all their impressions were concentrated in their
eyes, as life, under violent emotion, is concentrated in the heart.

Tycho belongs to the system of radiating mountains, like Aristarchus and
Copernicus. But it testified the most completely of all to the terrible
volcanic action to which the formation of the moon is due.

Tycho is situated in south lat. 43° and east long. 12°. Its centre is
occupied by a crater more than forty miles wide. It affects a slightly
elliptical form, and is inclosed by circular ramparts, which on the east
and west overlook the exterior plain from a height of 5,000 metres. It
is an aggregation of Mont Blancs, placed round a common centre, and
crowned with shining rays.

Photography itself could never represent what this incomparable
mountain, with all its projections converging to it and its interior
excrescences, is really like. In fact, it is during the full moon that
Tycho is seen in all its splendour. Then all shadows disappear, the
foreshortenings of perspective disappear, and all proofs come out
white--an unfortunate circumstance, for this strange region would have
been curious to reproduce with photographic exactitude. It is only an
agglomeration of holes, craters, circles, a vertiginous network of
crests. It will be understood, therefore, that the bubblings of this
central eruption have kept their first forms. Crystallised by cooling,
they have stereotyped the aspect which the moon formerly presented under
the influence of Plutonic forces.

The distance which separated the travellers from the circular summits of
Tycho was not so great that the travellers could not survey its
principal details. Even upon the embankment which forms the ramparts of
Tycho, the mountains hanging to the interior and exterior slopes rose in
stories like gigantic terraces. They appeared to be higher by 300 or 400
feet on the west than on the east. No system of terrestrial
castrametation could equal these natural fortifications. A town built at
the bottom of this circular cavity would have been utterly inaccessible.

Inaccessible and marvellously extended over this ground of picturesque
relief! Nature had not left the bottom of this crater flat and empty. It
possessed a special orography, a mountain system which made it a world
apart. The travellers clearly distinguished the cones, central hills,
remarkable movements of the ground, naturally disposed for the reception
of masterpieces of Selenite architecture. There was the place for a
temple, here for a forum, there the foundations of a palace, there the
plateau of a citadel, the whole overlooked by a central mountain 1,500
feet high--a vast circuit which would have held ancient Rome ten times
over.

"Ah!" exclaimed Michel Ardan, made enthusiastic by the sight, "what
grand towns could be built in this circle of mountains! A tranquil city,
a peaceful refuge, away from all human cares! How all misanthropes could
live there, all haters of humanity, all those disgusted with social
life!"

"All! It would be too small for them!" replied Barbicane simply.




CHAPTER XVIII.

GRAVE QUESTIONS.


In the meantime the projectile had passed the neighbourhood of Tycho.
Barbicane and his two friends then observed, with the most scrupulous
attention, those brilliant radii which the celebrated mountain disperses
so curiously on every horizon.

What was this radiating aureole? What geological phenomenon had caused
those ardent beams? This question justly occupied Barbicane. Under his
eyes, in every direction, ran luminous furrows, with raised banks and
concave middle, some ten miles, others more than twenty miles wide.
These shining trails ran in certain places at least 300 leagues from
Tycho, and seemed to cover, especially towards the east, north-east, and
north, half the southern hemisphere. One of these furrows stretched as
far as the amphitheatre of Neander, situated on the 40th meridian.
Another went rounding off through the Sea of Nectar and broke against
the chain of the Pyrenees after a run of 400 leagues; others towards the
west covered with a luminous network the Sea of Clouds and the Sea of
Humours.

What was the origin of these shining rays running equally over plains
and reliefs, however high? They all started from a common centre, the
crater of Tycho. They emanated from it.

Herschel attributed their brilliant aspect to ancient streams of lava
congealed by the cold, an opinion which has not been generally received.
Other astronomers have seen in these inexplicable rays a kind of
_moraines_, ranges of erratic blocks thrown out at the epoch of the
formation of Tycho.

"And why should it not be so?" asked Nicholl of Barbicane, who rejected
these different opinions at the same time that he related them.

"Because the regularity of these luminous lines, and the violence
necessary to send them to such a distance, are inexplicable.

"_Par bleu_!" replied Michel Ardan. "I can easily explain to myself the
origin of these rays."

"Indeed," said Barbicane.

"Yes," resumed Michel. "Why should they not be the cracks caused by the
shock of a bullet or a stone upon a pane of glass?"

"Good," replied Barbicane, smiling; "and what hand would be powerful
enough to hurl the stone that would produce such a shock?"

"A hand is not necessary," answered Michel, who would not give in; "and
as to the stone, let us say it is a comet."

"Ah! comets?" exclaimed Barbicane; "those much-abused comets! My worthy
Michel, your explanation is not bad, but your comet is not wanted. The
shock might have come from the interior of the planet. A violent
contraction of the lunar crust whilst cooling was enough to make that
gigantic crack."

"Contraction let it be--something like a lunar colic," answered Michel
Ardan.

"Besides," added Barbicane, "that is also the opinion of an English
_savant_, Nasmyth, and it seems to me to explain the radiation of these
mountains sufficiently."

"That Nasmyth was no fool!" answered Michel.

The travellers, who could never weary of such a spectacle, long admired
the splendours of Tycho. Their projectile, bathed in that double
irradiation of the sun and moon, must have appeared like a globe of
fire. They had, therefore, suddenly passed from considerable cold to
intense heat. Nature was thus preparing them to become Selenites.

To become Selenites! That idea again brought up the question of the
habitability of the moon. After what they had seen, could the travellers
solve it? Could they conclude for or against? Michel Ardan asked his two
friends to give utterance to their opinion, and asked them outright if
they thought that humanity and animality were represented in the lunar
world.

"I think we cannot answer," said Barbicane, "but in my opinion the
question ought not to be stated in that form. I ask to be allowed to
state it differently."

"State it as you like," answered Michel.

"This is it," resumed Barbicane. "The problem is double, and requires a
double solution. Is the moon habitable? Has it been inhabited?"

"Right," said Nicholl. "Let us first see if the moon is habitable."

"To tell the truth, I know nothing about it," replied Michel.

"And I answer in the negative," said Barbicane. "In her actual state,
with her certainly very slight atmosphere, her seas mostly dried up, her
insufficient water, her restricted vegetation, her abrupt alternations
of heat and cold, her nights and days 354 hours long, the moon does not
appear habitable to me, nor propitious to the development of the animal
kingdom, nor sufficient for the needs of existence such as we understand
it."

"Agreed," answered Nicholl; "but is not the moon habitable for beings
differently organised to us?"

"That question is more difficult to answer," replied Barbicane. "I will
try to do it, however, but I ask Nicholl if movement seems to him the
necessary result of existence, under no matter what organisation?"

"Without the slightest doubt," answered Nicholl.

"Well, then, my worthy companion, my answer will be that we have seen
the lunar continent at a distance of 500 yards, and that nothing
appeared to be moving on the surface of the moon. The presence of no
matter what form of humanity would be betrayed by appropriations,
different constructions, or even ruins. What did we see? Everywhere the
geological work of Nature, never the work of man. If, therefore,
representatives of the animal kingdom exist upon the moon, they have
taken refuge in those bottomless cavities which the eye cannot reach.
And I cannot admit that either, for they would have left traces of their
passage upon the plains which the atmosphere, however slight, covers.
Now these traces are nowhere visible. Therefore the only hypothesis that
remains is one of living beings without movement or life."

"You might just as well say living creatures who are not alive."

"Precisely," answered Barbicane, "which for us has no meaning."

"Then now we may formulate our opinion," said Michel.

"Yes," answered Nicholl.

"Very well," resumed Michel Ardan; "the Scientific Commission, meeting
in the projectile of the Gun Club, after having supported its arguments
upon fresh facts lately observed, decides unanimously upon the question
of the habitability of the moon--'No, the moon is not inhabited.'"

This decision was taken down by Barbicane in his notebook, where he had
already written the _procès-verbal_ of the sitting of December 6th.

"Now," said Nicholl, "let us attack the second question, depending on
the first. I therefore ask the honourable Commission if the moon is not
habitable, has it been inhabited?"

"Answer, Citizen Barbicane," said Michel Ardan.

"My friends," answered Barbicane, "I did not undertake this journey to
form an opinion upon the ancient habitability of our satellite. I may
add that my personal observations only confirm me in this opinion. I
believe, I even affirm, that the moon has been inhabited by a human race
organised like ours, that it has produced animals anatomically formed
like terrestrial animals; but I add that these races, human or animal,
have had their day, and are for ever extinct."

"Then," asked Michel, "the moon is an older world than the earth?"

"No," answered Barbicane with conviction, "but a world that has grown
old more quickly, whose formation and deformation have been more rapid.
Relatively the organising forces of matter have been much more violent
in the interior of the moon than in the interior of the celestial globe.
The actual state of this disc, broken up, tormented, and swollen, proves
this abundantly. In their origin the moon and the earth were only gases.
These gases became liquids under different influences, and the solid
mass was formed afterwards. But it is certain that our globe was gas or
liquid still when the moon, already solidified by cooling, became
habitable."

"I believe that," said Nicholl.

"Then," resumed Barbicane, "it was surrounded by atmosphere. The water
held in by the gassy element could not evaporate. Under the influence of
air, water, light, and heat, solar and central, vegetation took
possession of these continents prepared for its reception, and certainly
life manifested itself about that epoch, for Nature does not spend
itself in inutilities, and a world so marvellously habitable must have
been inhabited."

"Still," answered Nicholl, "many phenomena inherent to the movements of
our satellite must have prevented the expansion of the vegetable and
animal kingdoms. The days and nights 354 hours long, for example."

"At the terrestrial poles," said Michel, "they last six months."

"That is not a valuable argument, as the poles are not inhabited."

"In the actual state of the moon," resumed Barbicane, "the long nights
and days create differences of temperature insupportable to the
constitution, but it was not so at that epoch of historical times. The
atmosphere enveloped the disc with a fluid mantle. Vapour deposited
itself in the form of clouds. This natural screen tempered the ardour of
the solar lays, and retained the nocturnal radiation. Both light and
heat could diffuse themselves in the air. Hence there was equilibrium
between the influences which no longer exists now that the atmosphere
has almost entirely disappeared. Besides, I shall astonish you--"

"Astonish us?" said Michel Ardan.

"But I believe that at the epoch when the moon was inhabited the nights
and days did not last 354 hours!"

"Why so?" asked Nicholl quickly.

"Because it is very probable that then the moon's movement of rotation
on her axis was not equal to her movement of revolution, an equality
which puts every point of the lunar disc under the action of the solar
rays for fifteen days."

"Agreed," answered Nicholl; "but why should not these movements have
been equal, since they are so actually?"

"Because that equality has only been determined by terrestrial
attraction. Now, how do we know that this attraction was powerful enough
to influence the movements of the moon at the epoch the earth was still
fluid?"

"True," replied Nicholl; "and who can say that the moon has always been
the earth's satellite?"

"And who can say," exclaimed Michel Ardan, "that the moon did not exist
before the earth?"

Imagination began to wander in the indefinite field of hypotheses.
Barbicane wished to hold them in.

"Those," said he, "are speculations too high, problems really insoluble.
Do not let us enter into them. Let us only admit the insufficiency of
primordial attraction, and then by the inequality of rotation and
revolution days and nights could succeed each other upon the moon as
they do upon the earth. Besides, even under those conditions life was
possible."

"Then," asked Michel Ardan, "humanity has quite disappeared from the
moon?"

"Yes," answered Barbicane, "after having, doubtless, existed for
thousands of centuries. Then gradually the atmosphere becoming rarefied,
the disc will again be uninhabitable like the terrestrial globe will one
day become by cooling."

"By cooling?"

"Certainly," answered Barbicane. "As the interior fires became
extinguished the incandescent matter was concentrated and the lunar disc
became cool. By degrees the consequences of this phenomenon came
about--the disappearance of organic beings and the disappearance of
vegetation. Soon the atmosphere became rarefied, and was probably drawn
away by terrestrial attraction; the breathable air disappeared, and so
did water by evaporation. At that epoch the moon became uninhabitable,
and was no longer inhabited. It was a dead world like it is to-day."

"And you say that the like fate is reserved for the earth?"

"Very probably."

"But when?"

"When the cooling of its crust will have made it uninhabitable."

"Has the time it will take our unfortunate globe to melt been
calculated?"

"Certainly."

"And you know the reason?"

"Perfectly."

"Then tell us, sulky _savant_--you make me boil with impatience."

"Well, my worthy Michel," answered Barbicane tranquilly, "it is well
known what diminution of temperature the earth suffers in the lapse of a
century. Now, according to certain calculations, that average
temperature will be brought down to zero after a period of 400,000
years!"

"Four hundred thousand years!" exclaimed Michel. "Ah! I breathe again! I
was really frightened. I imagined from listening to you that we had only
fifty thousand years to live!"

Barbicane and Nicholl could not help laughing at their companion's
uneasiness. Then Nicholl, who wanted to have done with it, reminded them
of the second question to be settled.

"Has the moon been inhabited?" he asked.

The answer was unanimously in the affirmative.

During this discussion, fruitful in somewhat hazardous theories,
although it resumed the general ideas of science on the subject, the
projectile had run rapidly towards the lunar equator, at the same time
that it went farther away from the lunar disc. It had passed the circle
of Willem, and the 40th parallel, at a distance of 400 miles. Then
leaving Pitatus to the right, on the 30th degree, it went along the
south of the Sea of Clouds, of which it had already approached the
north. Different amphitheatres appeared confusedly under the white light
of the full moon--Bouillaud, Purbach, almost square with a central
crater, then Arzachel, whose interior mountain shone with indefinable
brilliancy.

At last, as the projectile went farther and farther away, the details
faded from the travellers' eyes, the mountains were confounded in the
distance, and all that remained of the marvellous, fantastical, and
wonderful satellite of the earth was the imperishable remembrance.




CHAPTER XIX.

A STRUGGLE WITH THE IMPOSSIBLE.


For some time Barbicane and his companions, mute and pensive, looked at
this world, which they had only seen from a distance, like Moses saw
Canaan, and from which they were going away for ever. The position of
the projectile relatively to the moon was modified, and now its lower
end was turned towards the earth.

This change, verified by Barbicane, surprised him greatly. If the bullet
was going to gravitate round the satellite in an elliptical orbit, why
was not its heaviest part turned towards it like the moon to the earth?
There again was an obscure point.

By watching the progress of the projectile they could see that it was
following away from the moon an analogous curve to that by which it
approached her. It was, therefore, describing a very long ellipsis which
would probably extend to the point of equal attraction, where the
influences of the earth and her satellite are neutralised.

Such was the conclusion which Barbicane correctly drew from the facts
observed, a conviction which his two friends shared with him.

Questions immediately began to shower upon him.

"What will become of us after we have reached the neutral point?" asked
Michel Ardan.

"That is unknown!" answered Barbicane.

"But we can make suppositions, I suppose?"

"We can make two," answered Barbicane. "Either the velocity of the
projectile will then be insufficient, and it will remain entirely
motionless on that line of double attraction--"

"I would rather have the other supposition, whatever it is," replied
Michel.

"Or the velocity will be sufficient," resumed Barbicane, "and it will
continue its elliptical orbit, and gravitate eternally round the orb of
night."

"Not very consoling that revolution," said Michel, "to become the humble
servants of a moon whom we are in the habit of considering our servant.
And is that the future that awaits us?"

Neither Barbicane nor Nicholl answered.

"Why do you not answer?" asked the impatient Michel.

"There is nothing to answer," said Nicholl.

"Can nothing be done?"

"No," answered Barbicane. "Do you pretend to struggle with the
impossible?"

"Why not? Ought a Frenchman and two Americans to recoil at such a word?"

"But what do you want to do?"

"Command the motion that is carrying us along!"

"Command it?"

"Yes," resumed Michel, getting animated, "stop it or modify it; use it
for the accomplishment of our plans."

"And how, pray?"

"That is your business! If artillerymen are not masters of their bullets
they are no longer artillerymen. If the projectile commands the gunner,
the gunner ought to be rammed instead into the cannon! Fine _savants_,
truly! who don't know now what to do after having induced me--"

"Induced!" cried Barbicane and Nicholl. "Induced! What do you mean by
that?"

"No recriminations!" said Michel. "I do not complain. The journey
pleases me. The bullet suits me. But let us do all that is humanly
possible to fall somewhere, if only upon the moon."

"We should only be too glad, my worthy Michel," answered Barbicane, "but
we have no means of doing it."

"Can we not modify the motion of the projectile?"

"No."

"Nor diminish its speed?"

"No."

"Not even by lightening it like they lighten an overloaded ship?"

"What can we throw out?" answered Nicholl. "We have no ballast on board.
And besides, it seems to me that a lightened projectile would go on more
quickly."

"Less quickly," said Michel.

"More quickly," replied Nicholl.

"Neither more nor less quickly," answered Barbicane, wishing to make his
two friends agree, "for we are moving in the void where we cannot take
specific weight into account."

"Very well," exclaimed Michel Ardan in a determined tone; "there is only
one thing to do."

"What is that?" asked Nicholl.

"Have breakfast," imperturbably answered the audacious Frenchman, who
always brought that solution to the greatest difficulties.

In fact, though that operation would have no influence on the direction
of the projectile, it might be attempted without risk, and even
successfully from the point of view of the stomach. Decidedly the
amiable Michel had only good ideas.

They breakfasted, therefore, at 2 a.m., but the hour was not of much
consequence. Michel served up his habitual _menu_, crowned by an amiable
bottle out of his secret cellar. If ideas did not come into their heads
the Chambertin of 1863 must be despaired of.

The meal over, observations began again.

The objects they had thrown out of the projectile still followed it at
the same invariable distance. It was evident that the bullet in its
movement of translation round the moon had not passed through any
atmosphere, for the specific weight of these objects would have modified
their respective distances.

There was nothing to see on the side of the terrestrial globe. The earth
was only a day old, having been new at midnight the day before, and two
days having to go by before her crescent, disengaged from the solar
rays, could serve as a clock to the Selenites, as in her movement of
rotation each of her points always passes the same meridian of the moon
every twenty-four hours.

The spectacle was a different one on the side of the moon; the orb was
shining in all its splendour amidst innumerable constellations, the rays
of which could not trouble its purity. Upon the disc the plains again
wore the sombre tint which is seen from the earth. The rest of the
nimbus was shining, and amidst the general blaze Tycho stood out like a
sun.

Barbicane could not manage any way to appreciate the velocity of the
projectile, but reasoning demonstrated that this speed must be uniformly
diminishing in conformity with the laws of rational mechanics.

In fact, it being admitted that the bullet would describe an orbit round
the moon, that orbit must necessarily be elliptical. Science proves that
it must be thus. No mobile circulation round any body is an exception to
that law. All the orbits described in space are elliptical, those of
satellites round their planets, those of planets around their sun, that
of the sun round the unknown orb that serves as its central pivot. Why
should the projectile of the Gun Club escape that natural arrangement?

Now in elliptical orbits attracting bodies always occupy one of the foci
of the ellipsis. The satellite is, therefore, nearer the body round
which it gravitates at one moment than it is at another. When the earth
is nearest the sun she is at her perihelion, and at her aphelion when
most distant. The moon is nearest the earth at her perigee, and most
distant at her apogee. To employ analogous expressions which enrich the
language of astronomers, if the projectile remained a satellite of the
moon, it ought to be said that it is in its "aposelene" at its most
distant point, and at its "periselene" at its nearest.

In the latter case the projectile ought to attain its maximum of speed,
in the latter its minimum. Now it was evidently going towards its
"aposelene," and Barbicane was right in thinking its speed would
decrease up to that point, and gradually increase when it would again
draw near the moon. That speed even would be absolutely _nil_ if the
point was coexistent with that of attraction.

Barbicane studied the consequences of these different situations; he was
trying what he could make of them when he was suddenly interrupted by a
cry from Michel Ardan.

"I'faith!" cried Michel, "what fools we are!"

"I don't say we are not," answered Barbicane; "but why?"

"Because we have some very simple means of slackening the speed that is
taking us away from the moon, and we do not use them."

"And what are those means?"

"That of utilising the force of recoil in our rockets."

"Ah, why not?" said Nicholl.

"We have not yet utilised that force, it is true," said Barbicane, "but
we shall do so."

"When?" asked Michel.

"When the time comes. Remark, my friends, that in the position now
occupied by the projectile, a position still oblique to the lunar disc,
our rockets, by altering its direction, might take it farther away
instead of nearer to the moon. Now I suppose it is the moon you want to
reach?"

"Essentially," answered Michel.

"Wait, then. Through some inexplicable influence the projectile has a
tendency to let its lower end fall towards the earth. It is probable
that at the point of equal attraction its conical summit will be
rigorously directed towards the moon. At that moment it may be hoped
that its speed will be _nil_. That will be the time to act, and under
the effort of our rockets we can, perhaps, provoke a direct fall upon
the surface of the lunar disc."

"Bravo!" said Michel.

"We have not done it yet, and we could not do it as we passed the
neutral point, because the projectile was still animated with too much
velocity."

"Well reasoned out," said Nicholl.

"We must wait patiently," said Barbicane, "and put every chance on our
side; then, after having despaired so long, I again begin to think we
shall reach our goal."

This conclusion provoked hurrahs from Michel Ardan. No one of these
daring madmen remembered the question they had all answered in the
negative--No, the moon is not inhabited! No, the moon is probably not
inhabitable! And yet they were going to do all they could to reach it.

One question only now remained to be solved: at what precise moment
would the projectile reach that point of equal attraction where the
travellers would play their last card?

In order to calculate that moment to within some seconds Barbicane had
only to have recourse to his travelling notes, and to take the different
altitudes from lunar parallels. Thus the time employed in going over the
distance between the neutral point and the South Pole must be equal to
the distance which separates the South Pole from the neutral point. The
hours representing the time it took were carefully noted down, and the
calculation became easy.

Barbicane found that this point would be reached by the projectile at 1
a.m. on the 8th of December. It was then 3 a.m. on the 7th of December.
Therefore, if nothing intervened, the projectile would reach the neutral
point in twenty-two hours.

The rockets had been put in their places to slacken the fall of the
bullet upon the moon, and now the bold fellows were going to use them to
provoke an exactly contrary effect. However that may be, they were
ready, and there was nothing to do but await the moment for setting fire
to them.

"As there is nothing to do," said Nicholl, "I have a proposition to
make."

"What is that?" asked Barbicane.

"I propose we go to sleep."

"That is a nice idea!" exclaimed Michel Ardan.

"It is forty hours since we have closed our eyes," said Nicholl. "A few
hours' sleep would set us up again."

"Never!" replied Michel.

"Good," said Nicholl; "every man to his humour--mine is to sleep."

And lying down on a divan, Nicholl was soon snoring like a forty-eight
pound bullet.

"Nicholl is a sensible man," said Barbicane soon. "I shall imitate him."

A few minutes after he was joining his bass to the captain's baritone.

"Decidedly," said Michel Ardan, when he found himself alone, "these
practical people sometimes do have opportune ideas."

And stretching out his long legs, and folding his long arms under his
head, Michel went to sleep too.

But this slumber could neither be durable nor peaceful. Too many
preoccupations filled the minds of these three men, and a few hours
after, at about 7 a.m., they all three awoke at once.

The projectile was still moving away from the moon, inclining its
conical summit more and more towards her. This phenomenon was
inexplicable at present, but it fortunately aided the designs of
Barbicane.

Another seventeen hours and the time for action would have come.

That day seemed long. However bold they might be, the travellers felt
much anxiety at the approach of the minute that was to decide
everything, either their fall upon the moon or their imprisonment in an
immutable orbit. They therefore counted the hours, which went too slowly
for them, Barbicane and Nicholl obstinately plunged in calculations,
Michel walking up and down the narrow space between the walls
contemplating with longing eye the impassible moon.

Sometimes thoughts of the earth passed through their minds. They saw
again their friends of the Gun Club, and the dearest of them all, J.T.
Maston. At that moment the honourable secretary must have been occupying
his post on the Rocky Mountains. If he should perceive the projectile
upon the mirror of his gigantic telescope what would he think? After
having seen it disappear behind the south pole of the moon, they would
see it reappear at the north! It was, therefore, the satellite of a
satellite! Had J.T. Maston sent that unexpected announcement into the
world? Was this to be the _dénouement_ of the great enterprise?

Meanwhile the day passed without incident. Terrestrial midnight came.
The 8th of December was about to commence. Another hour and the point of
equal attraction would be reached. What velocity then animated the
projectile? They could form no estimate; but no error could vitiate
Barbicane's calculations. At 1 a.m. that velocity ought to be and would
be _nil_.

Besides, another phenomenon would mark the stopping point of the
projectile on the neutral line. In that spot the two attractions,
terrestrial and lunar, would be annihilated. Objects would not weigh
anything. This singular fact, which had so curiously surprised Barbicane
and his companions before, must again come about under identical
circumstances. It was at that precise moment they must act.

The conical summit of the bullet had already sensibly turned towards the
lunar disc. The projectile was just right for utilising all the recoil
produced by setting fire to the apparatus. Chance was therefore in the
travellers' favour. If the velocity of the projectile were to be
absolutely annihilated upon the neutral point, a given motion, however
slight, towards the moon would determine its fall.

"Five minutes to one," said Nicholl.

"Everything is ready," answered Michel Ardan, directing his match
towards the flame of the gas.

"Wait!" said Barbicane, chronometer in hand.

At that moment weight had no effect. The travellers felt its complete
disappearance in themselves. They were near the neutral point if they
had not reached it.

"One o'clock!" said Barbicane.

Michel Ardan put his match to a contrivance that put all the fuses into
instantaneous communication. No detonation was heard outside, where air
was wanting, but through the port-lights Barbicane saw the prolonged
flame, which was immediately extinguished.

The projectile had a slight shock which was very sensibly felt in the
interior.

The three friends looked, listened, without speaking, hardly breathing.
The beating of their hearts might have been heard in the absolute
silence.

"Are we falling?" asked Michel Ardan at last.

"No," answered Nicholl; "for the bottom of the projectile has not turned
towards the lunar disc!"

At that moment Barbicane left his window and turned towards his two
companions. He was frightfully pale, his forehead wrinkled, his lips
contracted.

"We are falling!" said he.

"Ah!" cried Michel Ardan, "upon the moon?"

"Upon the earth!" answered Barbicane.

"The devil!" cried Michel Ardan; and he added philosophically, "when we
entered the bullet we did not think it would be so difficult to get out
of it again."

In fact, the frightful fall had begun. The velocity kept by the
projectile had sent it beyond the neutral point. The explosion of the
fuses had not stopped it. That velocity which had carried the projectile
beyond the neutral line as it went was destined to do the same upon its
return. The law of physics condemned it, in its elliptical orbit, _to
pass by every point it had already passed_.

It was a terrible fall from a height of 78,000 leagues, and which no
springs could deaden. According to the laws of ballistics the projectile
would strike the earth with a velocity equal to that which animated it
as it left the Columbiad--a velocity of "16,000 metres in the last
second!"

And in order to give some figures for comparison it has been calculated
that an object thrown from the towers of Notre Dame, the altitude of
which is only 200 feet, would reach the pavement with a velocity of 120
leagues an hour. Here the projectile would strike the earth with a
velocity of 57,600 _leagues an hour_.

"We are lost men," said Nicholl coldly.

"Well, if we die," answered Barbicane, with a sort of religious
enthusiasm, "the result of our journey will be magnificently enlarged!
God will tell us His own secret! In the other life the soul will need
neither machines nor engines in order to know! It will be identified
with eternal wisdom!"

"True," replied Michel Ardan: "the other world may well console us for
that trifling orb called the moon!"

Barbicane crossed his arms upon his chest with a movement of sublime
resignation.

"God's will be done!" he said.




CHAPTER XX.

THE SOUNDINGS OF THE SUSQUEHANNA.


Well, lieutenant, and what about those soundings?"

"I think the operation is almost over, sir. But who would have expected
to find such a depth so near land, at 100 leagues only from the American
coast?"

"Yes, Bronsfield, there is a great depression," said Captain Blomsberry.
"There exists a submarine valley here, hollowed out by Humboldt's
current, which runs along the coasts of America to the Straits of
Magellan."

"Those great depths," said the lieutenant, "are not favourable for the
laying of telegraph cables. A smooth plateau is the best, like the one
the American cable lies on between Valentia and Newfoundland."

"I agree with you, Bronsfield. And, may it please you, lieutenant, where
are we now?"

"Sir," answered Bronsfield, "we have at this moment 21,500 feet of line
out, and the bullet at the end of the line has not yet touched the
bottom, for the sounding-lead would have come up again."

"Brook's apparatus is an ingenious one," said Captain Blomsberry. "It
allows us to obtain very correct soundings."

"Touched!" cried at that moment one of the forecastle-men who was
superintending the operation.

The captain and lieutenant went on to the forecastle-deck.

"What depth are we in?" asked the captain.

"Twenty-one thousand seven hundred and sixty-two feet," answered the
lieutenant, writing it down in his pocket-book.

"Very well, Bronsfield," said the captain, "I will go and mark the
result on my chart. Now have the sounding-line brought in--that is a
work of several hours. Meanwhile the engineer shall have his fires
lighted, and we shall be ready to start as soon as you have done. It is
10 p.m., and with your permission, lieutenant, I shall turn in."

"Certainly, sir, certainly!" answered Lieutenant Bronsfield amiably.

The captain of the Susquehanna, a worthy man if ever there was one, the
very humble servant of his officers, went to his cabin, took his
brandy-and-water with many expressions of satisfaction to the steward,
got into bed, not before complimenting his servant on the way he made
beds, and sank into peaceful slumber.

It was then 10 p.m. The eleventh day of the month of December was going
to end in a magnificent night.

The Susquehanna, a corvette of 500 horse power, of the United States
Navy, was taking soundings in the Pacific at about a hundred leagues
from the American coast, abreast of that long peninsula on the coast of
New Mexico.

The wind had gradually fallen. There was not the slightest movement in
the air. The colours of the corvette hung from the mast motionless and
inert.

The captain, Jonathan Blomsberry, cousin-german to Colonel Blomsberry,
one of the Gun Club members who had married a Horschbidden, the
captain's aunt and daughter of an honourable Kentucky merchant--Captain
Blomsberry could not have wished for better weather to execute the
delicate operation of sounding. His corvette had felt nothing of that
great tempest which swept away the clouds heaped up on the Rocky
Mountains, and allowed the course of the famous projectile to be
observed. All was going on well, and he did not forget to thank Heaven
with all the fervour of a Presbyterian.

The series of soundings executed by the Susquehanna were intended for
finding out the most favourable bottoms for the establishment of a
submarine cable between the Hawaiian Islands and the American coast.

It was a vast project set on foot by a powerful company. Its director,
the intelligent Cyrus Field, meant even to cover all the islands of
Oceania with a vast electric network--an immense enterprise worthy of
American genius.

It was to the corvette Susquehanna that the first operations of sounding
had been entrusted. During the night from the 11th to the 12th of
December she was exactly in north lat. 27° 7' and 41° 37' long., west
from the Washington meridian.

The moon, then in her last quarter, began to show herself above the
horizon.

After Captain Blomsberry's departure, Lieutenant Bronsfield and a few
officers were together on the poop. As the moon appeared their thoughts
turned towards that orb which the eyes of a whole hemisphere were then
contemplating. The best marine glasses could not have discovered the
projectile wandering round the demi-globe, and yet they were all pointed
at the shining disc which millions of eyes were looking at in the same
moment.

"They started ten days ago," then said Lieutenant Bronsfield. "What can
have become of them?"

"They have arrived, sir," exclaimed a young midshipman, "and they are
doing what all travellers do in a new country, they are looking about
them."

"I am certain of it as you say so, my young friend," answered Lieutenant
Bronsfield, smiling.

"Still," said another officer, "their arrival cannot be doubted. The
projectile must have reached the moon at the moment she was full, at
midnight on the 5th. We are now at the 11th of December; that makes six
days. Now in six times twenty-four hours, with no darkness, they have
had time to get comfortably settled. It seems to me that I see our brave
countrymen encamped at the bottom of a valley, on the borders of a
Selenite stream, near the projectile, half buried by its fall, amidst
volcanic remains, Captain Nicholl beginning his levelling operations,
President Barbicane putting his travelling notes in order, Michel Ardan
performing the lunar solitudes with his Londrès cigar--"

"Oh, it must be so; it is so!" exclaimed the young midshipman,
enthusiastic at the ideal description of his superior.

"I should like to believe it," answered Lieutenant Bronsfield, who was
seldom carried away. "Unfortunately direct news from the lunar world
will always be wanting."

"Excuse me, sir," said the midshipman, "but cannot President Barbicane
write?"

A roar of laughter greeted this answer.

"Not letters," answered the young man quickly. "The post-office has
nothing to do with that."

"Perhaps you mean the telegraph-office?" said one of the officers
ironically.

"Nor that either," answered the midshipman, who would not give in. "But
it is very easy to establish graphic communication with the earth."

"And how, pray?"

"By means of the telescope on Long's Peak. You know that it brings the
moon to within two leagues only of the Rocky Mountains, and that it
allows them to see objects having nine feet of diameter on her surface.
Well, our industrious friends will construct a gigantic alphabet! They
will write words 600 feet long, and sentences a league long, and then
they can send up news!"

The young midshipman, who certainly had some imagination was loudly
applauded. Lieutenant Bronsfield himself was convinced that the idea
could have been carried out. He added that by sending luminous rays,
grouped by means of parabolical mirrors, direct communications could
also be established--in fact, these rays would be as visible on the
surface of Venus or Mars as the planet Neptune is from the earth. He
ended by saying that the brilliant points already observed on the
nearest planets might be signals made to the earth. But he said, that
though by these means they could have news from the lunar world, they
could not send any from the terrestrial world unless the Selenites have
at their disposition instruments with which to make distant
observations.

"That is evident," answered one of the officers, "but what has become of
the travellers? What have they done? What have they seen? That is what
interests us. Besides, if the experiment has succeeded, which I do not
doubt, it will be done again. The Columbiad is still walled up in the
soil of Florida. It is, therefore, now only a question of powder and
shot, and every time the moon passes the zenith we can send it a cargo
of visitors."

"It is evident," answered Lieutenant Bronsfield, "that J.T. Maston will
go and join his friends one of these days."

"If he will have me," exclaimed the midshipman, "I am ready to go with
him."

"Oh, there will be plenty of amateurs, and if they are allowed to go,
half the inhabitants of the earth will soon have emigrated to the moon!"

This conversation between the officers of the Susquehanna was kept up
till about 1 a.m. It would be impossible to transcribe the overwhelming
systems and theories which were emitted by these audacious minds. Since
Barbicane's attempt it seemed that nothing was impossible to Americans.
They had already formed the project of sending, not another commission
of _savants_, but a whole colony, and a whole army of infantry,
artillery, and cavalry to conquer the lunar world.

At 1 a.m. the sounding-line was not all hauled in. Ten thousand feet
remained out, which would take several more hours to bring in. According
to the commander's orders the fires had been lighted, and the pressure
was going up already. The Susquehanna might have started at once.

At that very moment--it was 1.17 a.m.--Lieutenant Bronsfield was about
to leave his watch to turn in when his attention was attracted by a
distant and quite unexpected hissing sound.

His comrades and he at first thought that the hissing came from an
escape of steam, but upon lifting up his head he found that it was high
up in the air.

They had not time to question each other before the hissing became of
frightful intensity, and suddenly to their dazzled eyes appeared an
enormous bolis, inflamed by the rapidity of its course, by its friction
against the atmospheric strata.

This ignited mass grew huger as it came nearer, and fell with the noise
of thunder upon the bowsprit of the corvette, which it smashed off close
to the stem, and vanished in the waves.

A few feet nearer and the Susquehanna would have gone down with all on
board.

At that moment Captain Blomsberry appeared half-clothed, and rushing in
the forecastle, where his officers had preceded him--

"With your permission, gentlemen, what has happened?" he asked.

And the midshipman, making himself the mouthpiece of them all, cried
out--

"Commander, it is 'they' come back again."




CHAPTER XXI.

J.T. MASTON CALLED IN.


Emotion was great on board the Susquehanna. Officers and sailors forgot
the terrible danger they had just been in--the danger of being crushed
and sunk. They only thought of the catastrophe which terminated the
journey. Thus, therefore, the moat audacious enterprise of ancient and
modern times lost the life of the bold adventurers who had attempted it.

"It is 'they' come back," the young midshipman had said, and they had
all understood. No one doubted that the bolis was the projectile of the
Gun Club. Opinions were divided about the fate of the travellers.

"They are dead!" said one.

"They are alive," answered the other. "The water is deep here, and the
shock has been deadened."

"But they will have no air, and will die suffocated!"

"Burnt!" answered the other. "Their projectile was only an incandescent
mass as it crossed the atmosphere."

"What does it matter?" was answered unanimously, "living or dead they
must be brought up from there."

Meanwhile Captain Blomsberry had called his officers together, and with
their permission he held a council. Something must be done immediately.
The most immediate was to haul up the projectile--a difficult operation,
but not an impossible one. But the corvette wanted the necessary
engines, which would have to be powerful and precise. It was, therefore,
resolved to put into the nearest port, and to send word to the Gun Club
about the fall of the bullet.

This determination was taken unanimously. The choice of a port was
discussed. The neighbouring coast had no harbour on the 27th degree of
latitude. Higher up, above the peninsula of Monterey, was the important
town which has given its name to it. But, seated on the confines of a
veritable desert, it had no telegraphic communication with the interior,
and electricity alone could spread the important news quickly enough.

Some degrees above lay the bay of San Francisco. Through the capital of
the Gold Country communication with the centre of the Union would be
easy. By putting all steam on, the Susquehanna, in less than two days,
could reach the port of San Francisco. She must, therefore, start at
once.

The fires were heaped up, and they could set sail immediately. Two
thousand fathoms of sounding still remained in the water. Captain
Blomsberry would not lose precious time in hauling it in, and resolved
to cut the line.

"We will fix the end to a buoy," said he, "and the buoy will indicate
the exact point where the projectile fell."

"Besides," answered Lieutenant Bronsfield, "we have our exact bearings:
north lat. 27° 7', and west long. 41° 37'."

"Very well, Mr. Bronsfield," answered the captain; "with your
permission, have the line cut."

A strong buoy, reinforced by a couple of spars, was thrown out on to
the surface of the ocean. The end of the line was solidly struck
beneath, and only submitted to the ebb and flow of the surges, so that
it would not drift much.

At that moment the engineer came to warn the captain that he had put the
pressure on, and they could start. The captain thanked him for his
excellent communication. Then he gave N.N.E. as the route. The corvette
was put about, and made for the bay of San Francisco with all steam on.
It was then 3 a.m.

Two hundred leagues to get over was not much for a quick vessel like the
Susquehanna. It got over that distance in thirty-six hours, and on the
14th of December, at 1.27 p.m., she would enter the bay of San
Francisco.

At the sight of this vessel of the national navy arriving with all speed
on, her bowsprit gone, and her mainmast propped up, public curiosity was
singularly excited. A compact crowd was soon assembled on the quays
awaiting the landing.

After weighing anchor Captain Blomsberry and Lieutenant Bronsfield got
down into an eight-oared boat which carried them rapidly to the land.

They jumped out on the quay.

"The telegraph-office?" they asked, without answering one of the
thousand questions that were showered upon them.

The port inspector guided them himself to the telegraph-office, amidst
an immense crowd of curious people.

Blomsberry and Bronsfield went into the office whilst the crowd crushed
against the door.

A few minutes later one message was sent in four different
directions:--1st, to the Secretary of the Navy, Washington; 2nd, to the
Vice-President of the Gun Club, Baltimore; 3rd, to the Honourable J.T.
Maston, Long's Peak, Rocky Mountains; 4th, to the Sub-Director of the
Cambridge Observatory, Massachusetts.

It ran as follows:--

"In north lat. 20° 7', and west long. 41° 37', the projectile of the
Columbiad fell into the Pacific, on December 12th, at 1.17 am. Send
instructions.--BLOMSBERRY, Commander Susquehanna."

Five minutes afterwards the whole town of San Francisco knew the
tidings. Before 6 p.m. the different States of the Union had
intelligence of the supreme catastrophe. After midnight, through the
cable, the whole of Europe knew the result of the great American
enterprise.

It would be impossible to describe the effect produced throughout the
world by the unexpected news.

On receipt of the telegram the Secretary of the Navy telegraphed to the
Susquehanna to keep under fire, and wait in the bay of San Francisco.
She was to be ready to set sail day or night.

The Observatory of Cambridge had an extraordinary meeting, and, with the
serenity which distinguishes scientific bodies, it peacefully discussed
the scientific part of the question.

At the Gun Club there was an explosion. All the artillerymen were
assembled. The Vice-President, the Honourable Wilcome, was just reading
the premature telegram by which Messrs. Maston and Belfast announced
that the projectile had just been perceived in the gigantic reflector of
Long's Peak. This communication informed them also that the bullet,
retained by the attraction of the moon, was playing the part of
sub-satellite in the solar world.

The truth on this subject is now known.

However, upon the arrival of Blomsberry's message, which so formally
contradicted J.T. Maston's telegram, two parties were formed in the
bosom of the Gun Club. On the one side were members who admitted the
fall of the projectile, and consequently the return of the travellers.
On the other were those who, holding by the observations at Long's Peak,
concluded that the commander of the Susquehanna was mistaken. According
to the latter, the pretended projectile was only a bolis, nothing but a
bolis, a shooting star, which in its fall had fractured the corvette.
Their argument could not very well be answered, because the velocity
with which it was endowed had made its observation very difficult. The
commander of the Susquehanna and his officers might certainly have been
mistaken in good faith. One argument certainly was in their favour: if
the projectile had fallen on the earth it must have touched the
terrestrial spheroid upon the 27th degree of north latitude, and, taking
into account the time that had elapsed, and the earth's movement of
rotation, between the 41st and 42nd degree of west longitude.

However that might be, it was unanimously decided in the Gun Club that
Blomsberry's brother Bilsby and Major Elphinstone should start at once
for San Francisco and give their advice about the means of dragging up
the projectile from the depths of the ocean.

These men started without losing an instant, and the railway which was
soon to cross the whole of Central America took them to St. Louis, where
rapid mail-coaches awaited them.

Almost at the same moment that the Secretary of the Navy, the
Vice-President of the Gun Club, and the Sub-Director of the Observatory
received the telegram from San Francisco, the Honourable J.T. Maston
felt the most violent emotion of his whole existence--an emotion not
even equalled by that he had experienced when his celebrated cannon was
blown up, and which, like it, nearly cost him his life.

It will be remembered that the Secretary of the Gun Club had started
some minutes after the projectile--and almost as quickly--for the
station of Long's Peak in the Rocky Mountains. The learned J. Belfast,
Director of the Cambridge Observatory, accompanied him. Arrived at the
station the two friends had summarily installed themselves, and no
longer left the summit of their enormous telescope.

We know that this gigantic instrument had been set up on the reflecting
system, called "front view" by the English. This arrangement only gave
one reflection of objects, and consequently made the view much clearer.
The result was that J.T. Maston and Belfast, whilst observing, were
stationed in the upper part of the instrument instead of in the lower.
They reached it by a twisted staircase, a masterpiece of lightness, and
below them lay the metal, well terminated by the metallic mirror, 280
feet deep.

Now it was upon the narrow platform placed round the telescope that the
two _savants_ passed their existence, cursing the daylight which hid the
moon from their eyes, and the clouds which obstinately veiled her at
night.

Who can depict their delight when, after waiting several days, during
the night of December 5th they perceived the vehicle that was carrying
their friends through space? To that delight succeeded deep
disappointment when, trusting to incomplete observations, they sent out
with their first telegram to the world the erroneous affirmation that
the projectile had become a satellite of the moon gravitating in an
immutable orbit.

After that instant the bullet disappeared behind the invisible disc of
the moon. But when it ought to have reappeared on the invisible disc the
impatience of J.T. Maston and his no less impatient companion may be
imagined. At every minute of the night they thought they should see the
projectile again, and they did not see it. Hence between them arose
endless discussions and violent disputes, Belfast affirming that the
projectile was not visible, J.T. Maston affirming that any one but a
blind man could see it.

"It is the bullet!" repeated J.T. Maston.

"No!" answered Belfast, "it is an avalanche falling from a lunar
mountain!"

"Well, then, we shall see it to-morrow."

"No, it will be seen no more. It is carried away into space."

"We shall see it, I tell you."

"No, we shall not."

And while these interjections were being showered like hail, the
well-known irritability of the Secretary of the Gun Club constituted a
permanent danger to the director, Belfast.

Their existence together would soon have become impossible, but an
unexpected event cut short these eternal discussions.

During the night between the 14th and 15th of December the two
irreconcilable friends were occupied in observing the lunar disc. J.T.
Maston was, as usual, saying strong things to the learned Belfast, who
was getting angry too. The Secretary of the Gun Club declared for the
thousandth time that he had just perceived the projectile, adding even
that Michel Ardan's face had appeared at one of the port-lights. He was
emphasising his arguments by a series of gestures which his redoubtable
hook rendered dangerous.

At that moment Belfast's servant appeared upon the platform--it was 10
p.m.--and gave him a telegram. It was the message from the Commander of
the Susquehanna.

Belfast tore the envelope, read the inclosure, and uttered a cry.

"What is it?" said J.T. Maston.

"It's the bullet!"

"What of that?"

"It has fallen upon the earth!"

Another cry; this time a howl answered him.

He turned towards J.T. Maston. The unfortunate fellow, leaning
imprudently over the metal tube, had disappeared down the immense
telescope--a fall of 280 feet! Belfast, distracted, rushed towards the
orifice of the reflector.

He breathed again. J.T. Maston's steel hook had caught in one of the
props which maintained the platform of the telescope. He was uttering
formidable cries.

Belfast called. Help came, and the imprudent secretary was hoisted up,
not without trouble.

He reappeared unhurt at the upper orifice.

"Suppose I had broken the mirror?" said he.

"You would have paid for it," answered Belfast severely.

"And where has the infernal bullet fallen?" asked J.T. Maston.

"Into the Pacific."

"Let us start at once."

A quarter of an hour afterwards the two learned friends were descending
the slope of the Rocky Mountains, and two days afterwards they reached
San Francisco at the same time as their friends of the Gun Club, having
killed five horses on the road.

Elphinstone, Blomsberry, and Bilsby rushed up to them upon their
arrival.

"What is to be done?" they exclaimed.

"The bullet must be fished up," answered J.T. Maston, "and as soon as
possible!"




CHAPTER XXII.

PICKED UP.


The very spot where the projectile had disappeared under the waves was
exactly known. The instruments for seizing it and bringing it to the
surface of the ocean were still wanting. They had to be invented and
then manufactured. American engineers could not be embarrassed by such a
trifle. The grappling-irons once established and steam helping, they
were assured of raising the projectile, notwithstanding its weight,
which diminished the density of the liquid amidst which it was plunged.

But it was not enough to fish up the bullet. It was necessary to act
promptly in the interest of the travellers. No one doubted that they
were still living.

"Yes," repeated J.T. Maston incessantly, whose confidence inspired
everybody, "our friends are clever fellows, and they cannot have fallen
like imbeciles. They are alive, alive and well, but we must make haste
in order to find them so. He had no anxiety about provisions and water.
They had enough for a long time! But air!--air would soon fail them.
Then they must make haste!"

And they did make haste. They prepared the Susquehanna for her new
destination. Her powerful engines were arranged to be used for the
hauling machines. The aluminium projectile only weighed 19,250 lbs., a
much less weight than that of the transatlantic cable, which was picked
up under similar circumstances. The only difficulty lay in the smooth
sides of the cylindro-conical bullet, which made it difficult to
grapple.

With that end in view the engineer Murchison, summoned to San Francisco,
caused enormous grappling-irons to be fitted upon an automatical system
which would not let the projectile go again if they succeeded in seizing
it with their powerful pincers. He also had some diving-dresses
prepared, which, by their impermeable and resisting texture, allowed
divers to survey the bottom of the sea. He likewise embarked on board
the Susquehanna apparatuses for compressed air, very ingeniously
contrived. They were veritable rooms, with port-lights in them, and
which, by introducing the water into certain compartments, could be sunk
to great depths. These apparatuses were already at San Francisco, where
they had been used in the construction of a submarine dyke. This was
fortunate, for there would not have been time to make them.

Yet notwithstanding the perfection of the apparatus, notwithstanding the
ingenuity of the _savants_ who were to use them, the success of the
operation was anything but assured. Fishing up a bullet from 20,000 feet
under water must be an uncertain operation. And even if the bullet
should again be brought to the surface, how had the travellers borne the
terrible shock that even 20,000 feet of water would not sufficiently
deaden?

In short, everything must be done quickly. J.T. Maston hurried on his
workmen day and night. He was ready either to buckle on the diver's
dress or to try the air-apparatus in order to find his courageous
friends.

Still, notwithstanding the diligence with which the different machines
were got ready, notwithstanding the considerable sums which were placed
at the disposition of the Gun Club by the Government of the Union, five
long days (five centuries) went by before the preparations were
completed. During that time public opinion was excited to the highest
point. Telegrams were incessantly exchanged all over the world through
the electric wires and cables. The saving of Barbicane, Nicholl, and
Michel Ardan became an international business. All the nations that had
subscribed to the enterprise of the Gun Club were equally interested in
the safety of the travellers.

At last the grappling-chains, air-chambers, and automatic
grappling-irons were embarked on board the Susquehanna. J.T. Maston, the
engineer Murchison, and the Gun Club delegates already occupied their
cabins. There was nothing to do but to start.

On the 21st of December, at 8 p.m., the corvette set sail on a calm sea
with a rather cold north-east wind blowing. All the population of San
Francisco crowded on to the quays, mute and anxious, reserving its
hurrahs for the return.

The steam was put on to its maximum of tension, and the screw of the
Susquehanna carried it rapidly out of the bay.

It would be useless to relate the conversations on board amongst the
officers, sailors, and passengers. All these men had but one thought.
Their hearts all beat with the same emotion. What were Barbicane and his
companions doing whilst they were hastening to their succour? What had
become of them? Had they been able to attempt some audacious manoeuvre
to recover their liberty? No one could say. The truth is that any
attempt would have failed. Sunk to nearly two leagues under the ocean,
their metal prison would defy any effort of its prisoners.

On the 23rd of December, at 8 a.m., after a rapid passage, the
Susquehanna ought to be on the scene of the disaster. They were obliged
to wait till twelve o'clock to take their exact bearings. The buoy
fastened on to the sounding-line had not yet been seen.

At noon Captain Blomsberry, helped by his officers, who controlled the
observation, made his point in presence of the delegates of the Gun
Club. That was an anxious moment. The Susquehanna was found to be at
some minutes west of the very spot where the projectile had disappeared
under the waves.

The direction of the corvette was therefore given in view of reaching
the precise spot.

At 12.47 p.m. the buoy was sighted. It was in perfect order, and did not
seem to have drifted far.

"At last!" exclaimed J.T. Maston.

"Shall we begin?" asked Captain Blomsberry.

"Without losing a second," answered J.T. Maston.

Every precaution was taken to keep the corvette perfectly motionless.

Before trying to grapple the projectile, the engineer, Murchison, wished
to find out its exact position on the sea-bottom. The submarine
apparatus destined for this search received their provision of air. The
handling of these engines is not without danger, for at 20,000 feet
below the surface of the water and under such great pressure they are
exposed to ruptures the consequences of which would be terrible.

J.T. Maston, the commander's brother, and the engineer Murchison,
without a thought of these dangers, took their places in the
air-chambers. The commander, on his foot-bridge, presided over the
operation, ready to stop or haul in his chains at the least signal. The
screw had been taken off, and all the force of the machines upon the
windlass would soon have brought up the apparatus on board.

The descent began at 1.25 p.m., and the chamber, dragged down by its
reservoirs filled with water, disappeared under the surface of the
ocean.

The emotion of the officers and sailors on board was now divided between
the prisoners in the projectile and the prisoners of the submarine
apparatus. These latter forgot themselves, and, glued to the panes of
the port-lights, they attentively observed the liquid masses they were
passing through.

The descent was rapid. At 2.17 p.m. J.T. Maston and his companions had
reached the bottom of the Pacific; but they saw nothing except the arid
desert which neither marine flora nor fauna any longer animated. By the
light of their lamps, furnished with powerful reflectors, they could
observe the dark layers of water in a rather large radius, but the
projectile remained invisible in their eyes.

The impatience of these bold divers could hardly be described. Their
apparatus being in electric communication with the corvette, they made a
signal agreed upon, and the Susquehanna carried their chamber over a
mile of space at one yard from the soil.

They thus explored all the submarine plain, deceived at every instant by
optical delusions which cut them to the heart. Here a rock, there a
swelling of the ground, looked to them like the much-sought-for
projectile; then they would soon find out their error and despair again.

"Where are they? Where can they be?" cried J.T. Maston.

And the poor man called aloud to Nicholl, Barbicane, and Michel Ardan,
as if his unfortunate friends could have heard him through that
impenetrable medium!

The search went on under those conditions until the vitiated state of
the air in the apparatus forced the divers to go up again.

The hauling in was begun at 6 p.m., and was not terminated before
midnight.

"We will try again to-morrow," said J.T. Maston as he stepped on to the
deck of the corvette.

"Yes," answered Captain Blomsberry.

"And in another place."

"Yes."

J.T. Maston did not yet doubt of his ultimate success, but his
companions, who were no longer intoxicated with the animation of the
first few hours, already took in all the difficulties of the enterprise.
What seemed easy at San Francisco in open ocean appeared almost
impossible. The chances of success diminished in a large proportion, and
it was to chance alone that the finding of the projectile had to be
left.

The next day, the 24th of December, notwithstanding the fatigues of the
preceding day, operations were resumed. The corvette moved some minutes
farther west, and the apparatus, provisioned with air again, took the
same explorers to the depths of the ocean.

All that day was passed in a fruitless search. The bed of the sea was a
desert. The day of the 25th brought no result, neither did that of the
26th.

It was disheartening. They thought of the unfortunate men shut up for
twenty-six days in the projectile. Perhaps they were all feeling the
first symptoms of suffocation, even if they had escaped the dangers of
their fall. The air was getting exhausted, and doubtless with the air
their courage and spirits.

"The air very likely, but their courage never," said J.T. Maston.

On the 28th, after two days' search, all hope was lost. This bullet was
an atom in the immensity of the sea! They must give up the hope of
finding it.

Still J.T. Maston would not hear about leaving. He would not abandon the
place without having at least found the tomb of his friends. But Captain
Blomsberry could not stay on obstinately, and notwithstanding the
opposition of the worthy secretary, he was obliged to give orders to set
sail.

On the 29th of December, at 9 a.m., the Susquehanna, heading north-east,
began to return to the bay of San Francisco.

It was 10 a.m. The corvette was leaving slowly and as if with regret the
scene of the catastrophe, when the sailor at the masthead, who was on
the look-out, called out all at once--

"A buoy on the lee bow!"

The officers looked in the direction indicated. They saw through their
telescopes the object signalled, which did look like one of those buoys
used for marking the openings of bays or rivers; but, unlike them, a
flag floating in the wind surmounted a cone which emerged five or six
feet. This buoy shone in the sunshine as if made of plates of silver.

The commander, Blomsberry, J.T. Maston, and the delegates of the Gun
Club ascended the foot-bridge and examined the object thus drifting on
the waves.

All looked with feverish anxiety, but in silence. None of them dared
utter the thought that came into all their minds.

The corvette approached to within two cables' length of the object.

A shudder ran through the whole crew.

The flag was an American one!

At that moment a veritable roar was heard. It was the worthy J.T.
Maston, who had fallen in a heap; forgetting on the one hand that he had
only an iron hook for one arm, and on the other that a simple
gutta-percha cap covered his cranium-box, he had given himself a
formidable blow.

They rushed towards him and picked him up. They recalled him to life.
And what were his first words?

"Ah! triple brutes! quadruple idiots! quintuple boobies that we are!"

"What is the matter?" every one round him exclaimed.

"What the matter is?"

"Speak, can't you?"

"It is, imbeciles," shouted the terrible secretary, "it is the bullet
only weighs 19,250 lbs!"

"Well?"

"And it displaces 28 tons, or 56,000 lbs., consequently _it floats_!"

Ah! how that worthy man did underline the verb "to float!" And it was
the truth! All, yes! all these _savants_ had forgotten this fundamental
law, that in consequence of its specific lightness the projectile, after
having been dragged by its fall to the greatest depths of the ocean, had
naturally returned to the surface; and now it was floating tranquilly
whichever way the wind carried them.

The boats had been lowered. J.T. Maston and his friends rushed into
them. The excitement was at its highest point. All hearts palpitated
whilst the boats rowed towards the projectile. What did it contain--the
living or the dead? The living. Yes! unless death had struck down
Barbicane and his companions since they had hoisted the flag!

Profound silence reigned in the boats. All hearts stopped beating. Eyes
no longer performed their office. One of the port-lights of the
projectile was opened. Some pieces of glass remaining in the frame
proved that it had been broken. This port-light was situated actually
five feet above water.

A boat drew alongside--that of J.T. Maston. He rushed to the broken
window.

At that moment the joyful and clear voice of Michel Ardan was heard
exclaiming in the accents of victory--"Double blank, Barbicane, double
blank!"

Barbicane, Michel Ardan, and Nicholl were playing at dominoes.




CHAPTER XXIII.

THE END.


It will be remembered that immense sympathy accompanied the three
travellers upon their departure. If the beginning of their enterprise
had caused such excitement in the old and new world, what enthusiasm
must welcome their return! Would not those millions of spectators who
had invaded the Floridian peninsula rush to meet the sublime
adventurers? Would those legions of foreigners from all points of the
globe, now in America, leave the Union without seeing Barbicane,
Nicholl, and Michel Ardan once more? No, and the ardent passion of the
public would worthily respond to the grandeur of the enterprise. Human
beings who had left the terrestrial spheroid, who had returned after
their strange journey into celestial space, could not fail to be
received like the prophet Elijah when he returned to the earth. To see
them first, to hear them afterwards, was the general desire.

This desire was to be very promptly realised by almost all the
inhabitants of the Union.

Barbicane, Michel Ardan, Nicholl, and the delegates of the Gun Club
returned without delay to Baltimore, and were there received with
indescribable enthusiasm. The president's travelling notes were ready to
be given up for publicity. The _New York Herald_ bought this manuscript
at a price which is not yet known, but which must have been enormous. In
fact, during the publication of the _Journey to the Moon_ they printed
5,000,000 copies of that newspaper. Three days after the travellers'
return to the earth the least details of their expedition were known.
The only thing remaining to be done was to see the heroes of this
superhuman enterprise.

The exploration of Barbicane and his friends around the moon had allowed
them to control the different theories about the terrestrial satellite.
These _savants_ had observed it _de visu_ and under quite peculiar
circumstances. It was now known which systems were to be rejected, which
admitted, upon the formation of this orb, its origin, and its
inhabitability. Its past, present, and future had given up their
secrets. What could be objected to conscientious observations made at
less than forty miles from that curious mountain of Tycho, the strangest
mountain system of lunar orography? What answers could be made to
_savants_ who had looked into the dark depths of the amphitheatre of
Pluto? Who could contradict these audacious men whom the hazards of
their enterprise had carried over the invisible disc of the moon, which
no human eye had ever seen before? It was now their prerogative to
impose the limits of that selenographic science which had built up the
lunar world like Cuvier did the skeleton of a fossil, and to say, "The
moon was this, a world inhabitable and inhabited anterior to the earth!
The moon is this, a world now uninhabitable and uninhabited!"

In order to welcome the return of the most illustrious of its members
and his two companions, the Gun Club thought of giving them a banquet;
but a banquet worthy of them, worthy of the American people, and under
such circumstances that all the inhabitants of the Union could take a
direct part in it.

All the termini of the railroads in the State were joined together by
movable rails. Then, in all the stations hung with the same flags,
decorated with the same ornaments, were spread tables uniformly dressed.
At a certain time, severely calculated upon electric clocks which beat
the seconds at the same instant, the inhabitants were invited to take
their places at the same banquet.

During four days, from the 5th to the 9th of January, the trains were
suspended like they are on Sundays upon the railways of the Union, and
all the lines were free.

One locomotive alone, a very fast engine, dragging a state saloon, had
the right of circulating, during these four days, upon the railways of
the United States.

This locomotive, conducted by a stoker and a mechanic, carried, by a
great favour, the Honourable J.T. Maston, Secretary of the Gun Club.

The saloon was reserved for President Barbicane, Captain Nicholl, and
Michel Ardan.

The train left the station of Baltimore upon the whistle of the
engine-driver amidst the hurrahs and all the admiring interjections of
the American language. It went at the speed of eighty leagues an hour.
But what was that speed compared to the one with which the three heroes
had left the Columbiad?

Thus they went from one town to another, finding the population in
crowds upon their passage saluting them with the same acclamations, and
showering upon them the same "bravoes." They thus travelled over the
east of the Union through Pennsylvania, Connecticut, Massachusetts,
Vermont, Maine, and New Brunswick; north and west through New York,
Ohio, Michigan, and Wisconsin; south through Illinois, Missouri,
Arkansas, Texas, and Louisiana; south-east through Alabama and Florida,
Georgia, and the Carolinas; they visited the centre through Tennessee,
Kentucky, Virginia, and Indiana; then after the station of Washington
they re-entered Baltimore, and during four days they could imagine that
the United States of America, seated at one immense banquet, saluted
them simultaneously with the same hurrahs.

This apotheosis was worthy of these heroes, whom fable would have placed
in the ranks of demigods.

And now would this attempt, without precedent in the annals of travels,
have any practical result? Would direct communication ever be
established with the moon? Would a service of navigation ever be founded
across space for the solar world? Will people ever go from planet to
planet, from Jupiter to Mercury, and later on from one star to another,
from the Polar star to Sirius, would a method of locomotion allow of
visiting the suns which swarm in the firmament?

No answer can be given to these questions, but knowing the audacious
ingenuity of the Anglo-Saxon race, no one will be astonished that the
Americans tried to turn President Barbicane's experiment to account.

Thus some time after the return of the travellers the public received
with marked favour the advertisement of a Joint-Stock Company (Limited),
with a capital of a hundred million dollars, divided into a hundred
thousand shares of a thousand dollars each, under the name of _National
Company for Interstellar Communication_--President, Barbicane;
Vice-President, Captain Nicholl; Secretary, J.T. Maston; Director,
Michel Ardan--and as it is customary in America to foresee everything in
business, even bankruptcy, the Honourable Harry Trollope, Commissary
Judge, and Francis Dayton were appointed beforehand assignees.

THE END.







End of the Project Gutenberg EBook of The Moon-Voyage, by Jules Verne

*** END OF THIS PROJECT GUTENBERG EBOOK THE MOON-VOYAGE ***

***** This file should be named 12901-8.txt or 12901-8.zip *****
This and all associated files of various formats will be found in:
        https://www.gutenberg.org/1/2/9/0/12901/

Produced by Norm Wolcott, Gregory Margo and PG Distributed Proofreaders

Updated editions will replace the previous one--the old editions
will be renamed.

Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties.  Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark.  Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission.  If you
do not charge anything for copies of this eBook, complying with the
rules is very easy.  You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research.  They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks.  Redistribution is
subject to the trademark license, especially commercial
redistribution.



*** START: FULL LICENSE ***

THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
https://gutenberg.org/license).


Section 1.  General Terms of Use and Redistributing Project Gutenberg-tm
electronic works

1.A.  By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement.  If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project
Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B.  "Project Gutenberg" is a registered trademark.  It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement.  There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement.  See
paragraph 1.C below.  There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works.  See paragraph 1.E below.

1.C.  The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works.  Nearly all the individual works in the
collection are in the public domain in the United States.  If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed.  Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work.  You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.

1.D.  The copyright laws of the place where you are located also govern
what you can do with this work.  Copyright laws in most countries are in
a constant state of change.  If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work.  The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.

1.E.  Unless you have removed all references to Project Gutenberg:

1.E.1.  The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

1.E.2.  If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees
or charges.  If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the
Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.

1.E.3.  If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder.  Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.

1.E.4.  Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.

1.E.5.  Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.

1.E.6.  You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form.  However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form.  Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.

1.E.7.  Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8.  You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that

- You pay a royalty fee of 20% of the gross profits you derive from
     the use of Project Gutenberg-tm works calculated using the method
     you already use to calculate your applicable taxes.  The fee is
     owed to the owner of the Project Gutenberg-tm trademark, but he
     has agreed to donate royalties under this paragraph to the
     Project Gutenberg Literary Archive Foundation.  Royalty payments
     must be paid within 60 days following each date on which you
     prepare (or are legally required to prepare) your periodic tax
     returns.  Royalty payments should be clearly marked as such and
     sent to the Project Gutenberg Literary Archive Foundation at the
     address specified in Section 4, "Information about donations to
     the Project Gutenberg Literary Archive Foundation."

- You provide a full refund of any money paid by a user who notifies
     you in writing (or by e-mail) within 30 days of receipt that s/he
     does not agree to the terms of the full Project Gutenberg-tm
     License.  You must require such a user to return or
     destroy all copies of the works possessed in a physical medium
     and discontinue all use of and all access to other copies of
     Project Gutenberg-tm works.

- You provide, in accordance with paragraph 1.F.3, a full refund of any
     money paid for a work or a replacement copy, if a defect in the
     electronic work is discovered and reported to you within 90 days
     of receipt of the work.

- You comply with all other terms of this agreement for free
     distribution of Project Gutenberg-tm works.

1.E.9.  If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark.  Contact the
Foundation as set forth in Section 3 below.

1.F.

1.F.1.  Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection.  Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.

1.F.2.  LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees.  YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH F3.  YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3.  LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from.  If you
received the work on a physical medium, you must return the medium with
your written explanation.  The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund.  If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to
receive the work electronically in lieu of a refund.  If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.

1.F.4.  Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.

1.F.5.  Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law.  The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.

1.F.6.  INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.


Section  2.  Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers.  It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need, is critical to reaching Project Gutenberg-tm's
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come.  In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at https://www.pglaf.org.


Section 3.  Information about the Project Gutenberg Literary Archive
Foundation

The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service.  The Foundation's EIN or federal tax identification
number is 64-6221541.  Its 501(c)(3) letter is posted at
https://pglaf.org/fundraising.  Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent
permitted by U.S. federal laws and your state's laws.

The Foundation's principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations.  Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
[email protected].  Email contact links and up to date contact
information can be found at the Foundation's web site and official
page at https://pglaf.org

For additional contact information:
     Dr. Gregory B. Newby
     Chief Executive and Director
     [email protected]


Section 4.  Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment.  Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States.  Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements.  We do not solicit donations in locations
where we have not received written confirmation of compliance.  To
SEND DONATIONS or determine the status of compliance for any
particular state visit https://pglaf.org

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States.  U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation
methods and addresses.  Donations are accepted in a number of other
ways including including checks, online payments and credit card
donations.  To donate, please visit: https://pglaf.org/donate


Section 5.  General Information About Project Gutenberg-tm electronic
works.

Professor Michael S. Hart was the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone.  For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.


Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included.  Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.


Most people start at our Web site which has the main PG search facility:

     https://www.gutenberg.org

This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.