The Project Gutenberg EBook of A Brief History of Element Discovery, Synthesis, and Analysis, by Glen W. Watson This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: A Brief History of Element Discovery, Synthesis, and Analysis Author: Glen W. Watson Release Date: March 13, 2010 [EBook #31624] Language: English *** START OF THIS PROJECT GUTENBERG EBOOK ELEMENT DISCOVERY *** Produced by Mark C. Orton, Erica Pfister-Altschul and the Online Distributed Proofreading Team at http://www.pgdp.net [Transcriber's Notes: The following errors are noted, but have not been corrected: Page 17, footnote: "plutomium" should be "plutonium" Page 8: "knowns" should be "knows" In element names, {} represents subscripted numbers and <> represents superscripted numbers. Readers may also refer to the HTML version of the text, in which super and subscripted numbers are represented visually. Italic emphasis is indicated by surrounding the word with _underscores_. Greek letters in the original text are marked in brackets, e. g. [alpha] or [gamma]. Table I (THE TRANSURANIUM ELEMENTS) has been moved from pages 12-13, in the middle of the book, to the end of the text.] A Brief History of ELEMENT DISCOVERY, SYNTHESIS, and ANALYSIS Glen W. Watson September 1963 [Illustration] LAWRENCE RADIATION LABORATORY University of California Berkeley and Livermore Operating under contract with the United States Atomic Energy Commission [Illustration: Radioactive elements: alpha particles from a speck of radium leave tracks on a photographic emulsion. (Occhialini and Powell, 1947)] A BRIEF HISTORY OF ELEMENT DISCOVERY, SYNTHESIS, AND ANALYSIS It is well known that the number of elements has grown from four in the days of the Greeks to 103 at present, but the change in methods needed for their discovery is not so well known. Up until 1939, only 88 naturally occurring elements had been discovered. It took a dramatic modern technique (based on Ernest O. Lawrence's Nobel-prize-winning atom smasher, the cyclotron) to synthesize the most recently discovered elements. Most of these recent discoveries are directly attributed to scientists working under the Atomic Energy Commission at the University of California's Radiation Laboratory at Berkeley. But it is apparent that our present knowledge of the elements stretches back into history: back to England's Ernest Rutherford, who in 1919 proved that, occasionally, when an alpha particle from radium strikes a nitrogen atom, either a proton or a hydrogen nucleus is ejected; to the Dane Niels Bohr and his 1913 idea of electron orbits; to a once unknown Swiss patent clerk, Albert Einstein, and his now famous theories; to Poland's Marie Curie who, in 1898, with her French husband Pierre laboriously isolated polonium and radium; back to the French scientist H. A. Becquerel, who first discovered something he called a "spontaneous emission of penetrating rays from certain salts of uranium"; to the German physicist W. K. Roentgen and his discovery of x rays in 1895; and back still further. During this passage of scientific history, the very idea of "element" has undergone several great changes. The early Greeks suggested earth, air, fire, and water as being the essential material from which all others were made. Aristotle considered these as being combinations of four properties: hot, cold, dry, and moist (see Fig. 1). [Illustration: Fig. 1. The elements as proposed by the early Greeks.] Later, a fifth "essence," ether, the building material of the heavenly bodies was added. Paracelsus (1493-1541) introduced the three alchemical symbols salt, sulfur, and mercury. Sulfur was the principle of combustability, salt the fixed part left after burning (calcination), and mercury the essential part of all metals. For example, gold and silver were supposedly different combinations of sulfur and mercury. Robert Boyle in his "Sceptical Chymist" (1661) first defined the word element in the sense which it retained until the discovery of radioactivity (1896), namely, a form of matter that could not be split into simpler forms. The first discovery of a true element in historical time was that of phosphorus by Dr. Brand of Hamburg, in 1669. Brand kept his process secret, but, as in modern times, knowledge of the element's existence was sufficient to let others, like Kunkel and Boyle in England, succeed independently in isolating it shortly afterward. As in our atomic age, a delicate balance was made between the "light-giving" (desirable) and "heat-giving" (feared) powers of a discovery. An early experimenter was at first "delighted with the white, waxy substance that glowed so charmingly in the dark of his laboratory," but later wrote, "I am not making it any more for much harm may come of it." Robert Boyle wrote in 1680 of phosphorus, "It shone so briskly and lookt so oddly that the sight was extreamly pleasing, having in it a mixture of strangeness, beauty and frightfulness." These words describe almost exactly the impressions of eye witnesses of the first atom bomb test at Alamagordo, New Mexico, July 16, 1945. For the next two and three-quarters centuries the chemists had much fun and some fame discovering new elements. Frequently there was a long interval between discovery and recognition. Thus Scheele made chlorine in 1774 by the action of "black manganese" (manganese dioxide) on concentrated muriatic acid (hydrochloric acid), but it was not recognized as an element till the work of Davy in 1810. Occasionally the development of a new technique would lead to the "easy" discovery of a whole group of new elements. Thus Davy, starting in 1807, applied the method of electrolysis, using a development of Volta's pile as a source of current; in a short time he discovered aluminum, barium, boron, calcium, magnesium, potassium, sodium, and strontium. The invention of the spectroscope by Bunsen and Kirchhoff in 1859 provided a new tool which could establish the purity of substances already known and lead to the discovery of others. Thus, helium was discovered in the sun's spectrum by Jansen and isolated from uranite by Ramsay in 1895. The discovery of radioactivity by Becquerel in 1896 (touched off by Roentgen's discovery of x rays the year before) gave an even more sensitive method of detecting the presence or absence of certain kinds of matter. It is well known that Pierre and Marie Curie used this new-found radioactivity to identify the new elements polonium and radium. Compounds of these new elements were obtained by patient fractional recrystallization of their salts. The "explanation" of radioactivity led to the discovery of isotopes by Rutherford and Soddy in 1914, and with this discovery a revision of our idea of elements became necessary. Since Boyle, it had been assumed that all atoms of the individual elements were identical and unlike any others, and could not be changed into anything simpler. Now it became evident that the atoms of radioactive elements were constantly changing into other elements, thereby releasing very large amounts of energy, and that many different forms of the same element (lead was the first studied) were possible. We now think of an element as a form of matter in which all atoms have the same nuclear charge. The human mind has always sought order and simplification of the external world; in chemistry the fruitful classifications were Dobereiner's Triads (1829), Newland's law of octaves (1865), and Mendeleev's periodic law (1869). The chart expressing this periodic law seemed to indicate the maximum extent of the elements and gave good hints "where to look for" and "the probable properties of" the remaining ones (see Fig. 2). By 1925, all but four of the slots in the 92-place file had been filled. The vacancies were at 43, 61, 85, and 87. [Illustration: Fig. 2. Periodic chart of the elements (1963)] Workers using traditional analytical techniques continued to search for these elements, but their efforts were foredoomed to failure. None of the nuclei of the isotopes of elements 43, 61, 85, and 87 are stable; hence weighable quantities of them do not exist in nature, and new techniques had to be developed before we could really say we had "discovered" them. In 1919, Rutherford accomplished scientifically what medieval alchemists had failed to do with "magic" experiments and other less sophisticated techniques. It wasn't gold (the goal of the alchemists) he found but something more valuable with even greater potential for good and evil: a method of transmuting one element into another. By bombarding nitrogen nuclei with alpha particles from radium, he found that nitrogen was changed into oxygen. The process for radioactive transmutation is somewhat like a common chemical reaction. An alpha particle, which has the same charge (+2) and atomic mass (4) as a helium nucleus, penetrates the repulsive forces of the nitrogen nucleus and deposits one proton and one neutron; this changes the nitrogen atom into an oxygen atom. The reaction is written {7}N<14> + {2}He<4> --> {1}H<1> + {8}O<17>. The number at the lower left of each element symbol in the above reaction is the proton number. This number determines the basic chemical identity of an atom, and it is this number scientists must change before one element can be transformed into another. The common way to accomplish this artificially is by bombarding nuclei with nuclear projectiles. Rutherford used naturally occurring alpha particles from radium as his projectiles because they were the most effective he could then find. But these natural alpha particles have several drawbacks: they are positively charged, like the nucleus itself, and are therefore more or less repulsed depending on the proton number of the element being bombarded; they do not move fast enough to penetrate the nuclei of heavier elements (those with many protons); and, for various other reasons (some of them unexplained), are inefficient in breaking up the nucleus. It is estimated that only 1 out of 300,000 of these alpha particles will react with nitrogen. Physicists immediately began the search for artificial means to accelerate a wider variety of nuclear particles to high energies. Protons, because they have a +1 charge rather than the +2 charge of the alpha particles, are repulsed less strongly by the positive charge on the nucleus, and are therefore more useful as bombarding projectiles. In 1929, E. T. S. Walton and J. D. Cockcroft passed an electric discharge through hydrogen gas, thereby removing electrons from the hydrogen atom; this left a beam of protons (i. e., hydrogen ions), which was then accelerated by high voltages. This Cockcroft-Walton voltage multiplier accelerated the protons to fairly high energies (about 800,000 electron volts), but the protons still had a plus charge and their energies were still not high enough to overcome the repulsive forces (Coulombic repulsion) of the heavier nuclei. A later development, the Van de Graaff electrostatic generator, produced a beam of hydrogen ions and other positively charged ions, and electrons at even higher energies. An early model of the linear accelerator also gave a beam of heavy positive ions at high energies. These were the next two instruments devised in the search for efficient bombarding projectiles. However, the impasse continued: neither instrument allowed scientists to crack the nuclei of the heavier elements. Ernest O. Lawrence's cyclotron, built in 1931, was the first device capable of accelerating positive ions to the very high energies needed. Its basic principle of operation is not difficult to understand. A charged particle accelerated in a cyclotron is analogous to a ball being whirled on a string fastened to the top of a pole. A negative electric field attracts the positively charged particle (ball) towards it and then switches off until the particle swings halfway around; the field then becomes negative in front of the particle again, and again attracts it. As the particle moves faster and faster it spirals outward in an ever increasing circle, something like a tether ball unwinding from a pole. The energies achieved would have seemed fantastic to earlier scientists. The Bevatron, a modern offspring of the first cyclotron, accelerates protons to 99.13% the speed of light, thereby giving them 6.2 billion electron volts (BeV). Another instrument, the heavy-ion linear accelerator (Hilac), accelerates ions as heavy as neon to about 15% the speed of light. It is called a linear accelerator because it accelerates particles in a straight line. Stanford University is currently (1963) in the process of building a linear accelerator approximately two miles long which will accelerate charged particles to 99.9% the speed of light. But highly accelerated charged particles did not solve all of science's questions about the inner workings of the nucleus. In 1932, during the early search for more efficient ways to bombard nuclei, James Chadwick discovered the neutron. This particle, which is neutral in charge and is approximately the same mass as a proton, has the remarkable quality of efficiently producing nuclear reactions even at very low energies. No one exactly knowns why. At low energies, protons, alpha particles, or other charged particles do not interact with nuclei because they cannot penetrate the electrostatic energy barriers. For example, slow positive particles pick up electrons, become neutral, and lose their ability to cause nuclear transformations. Slow neutrons, on the other hand, can enter nearly all atomic nuclei and induce fission of certain of the heavier ones. It is, in fact, these properties of the neutron which have made possible the utilization of atomic energy. With these tools, researchers were not long in accurately identifying the missing elements 43, 61, 85, and 87 and more--indeed, the list of new elements, isotopes, and particles now seems endless. Element 43 was "made" for the first time as a result of bombarding molybdenum with deuterons in the Berkeley cyclotron. The chemical work of identifying the element was done by Emilio Segrè and others then working at Palermo, Sicily, and they chose to call it technetium, because it was the element first made by artificial technical methods. Element 61 was made for the first time from the fission disintegration products of uranium in the Clinton (Oak Ridge) reactor. Marinsky and Glendenin, who did the chemical work of identification, chose to call it promethium because they wished to point out that just as Prometheus stole fire (a great force for good or evil) from the hidden storehouse of the gods and presented it to man, so their newly assembled reactor delivered to mankind an even greater force, nuclear energy. Element 85 is called astatine, from the Greek astatos, meaning "unstable," because astatine _is_ unstable (of course all other elements having a nuclear charge number greater than 84 are unstable, too). Astatine was first made at Berkeley by bombarding bismuth with alpha particles, which produced astatine and released two neutrons. The element has since been found in nature as a small constituent of the natural decay of actinium. The last of the original 92 elements to be discovered was element 87, francium. It was identified in 1939 by French scientist Marguerite Perey. Children have a game in which they pile blocks up to see how high they can go before they topple over. In medieval times, petty rulers in their Italian states vied with one another to see who could build the tallest tower. Some beautiful results of this game still remain in Florence, Siena, and other Italian hill cities. Currently, Americans vie in a similar way with the wheelbase and overall length of their cars. After 1934, the game among scientists took the form of seeing who could extend the length of the periodic system of the elements; as with medieval towers, it was Italy that again began with the most enthusiasm and activity under the leadership of Enrico Fermi. Merely adding neutrons would not be enough; that would make only a heavier isotope of the already known heaviest elements, uranium. However, if the incoming neutron caused some rearrangement within the nucleus and if it were accompanied by expulsion of electrons, that _would_ make a new element. Trials by Fermi and his co-workers with various elements led to unmistakeable evidence of the expulsion of electrons (beta activity) with at least four different rates of decay (half-lives). Claims were advanced for the creation of elements 93 and 94 and possibly further (the transuranium elements, Table I). Much difficulty was experienced, however, in proving that the activity really was due to the formation of elements 93 and 94. As more people became interested and extended the scope of the experiments, the picture became more confused rather than clarified. Careful studies soon showed that the activities did _not_ decay logarithmically--which means that they were caused by mixtures, not individual pure substances--and the original four activities reported by Fermi grew to at least nine. As a matter of fact, the way out of the difficulty had been indicated soon after Fermi's original announcement. Dr. Ida Noddack pointed out that no one had searched among the products of Fermi's experiment for elements _lighter_ than lead, but no one paid any attention to her suggestion at the time. The matter was finally cleared up by Dr. Otto Hahn and F. Strassmann. They were able to show that instead of uranium having small pieces like helium nuclei, fast electrons, and super-hard x-rays, knocked off as expected, the atom had split into two roughly equal pieces, together with some excess neutrons. This process is called nuclear fission. The two large pieces were unstable and decayed further with the loss of electrons, hence the [beta] activity. This process is so complicated that there are not, as originally reported, only four half-lives, but at least 200 different varieties of at least 35 different elements. The discovery of fission attended by the release of enormous amounts of energy led to feverish activity on the part of physicists and chemists everywhere in the world. In June 1940, McMillan and Abelson presented definite proof that element 93 had been found in uranium penetrated by neutrons during deuteron bombardment in the cyclotron at the University of California Radiation Laboratory. The California scientists called the newly discovered element neptunium, because it lies beyond the element uranium just as the planet Neptune lies beyond Uranus. The particular isotope formed in those first experiments was {93}Np<239>; this is read neptunium having a nuclear charge of 93 and an atomic mass number of 239. It has a half-life of 2.3 days, during which it gives up another electron ([beta] particle) and becomes element 94, or plutonium (so called after Pluto, the next planet beyond Neptune). This particular form of plutonium ({94}Pu<239>) has such a long half-life (24,000 years) that it could not be detected. The first isotope of element 94 to be discovered was Pu<238>, made by direct deuteron bombardment in the Berkeley 60-inch cyclotron by Radiation Laboratory scientists Seaborg, McMillan, Kennedy, and Wahl; it had an [alpha]-decay half-life of 86.4 years, which gave it sufficient radioactivity so that its chemistry could be studied. Having found these chemical properties in Pu<238>, experimenters knew {94}Pu<239> would behave similarly. It was soon shown that the nucleus of {94}Pu<239> would undergo fission in the same way as {92}U<235> when bombarded with slow neutrons and that it could be produced in the newly assembled atomic pile. Researchers wished to learn as much as possible about its chemistry; therefore, during the summer of 1942 two large cyclotrons at St. Louis and Berkeley bombarded hundreds of pounds of uranium almost continuously. This resulted in the formation of 200 micrograms of plutonium. From this small amount, enough of the chemical properties of the element were learned to permit correct design of the huge plutonium-recovery plant at Hanford, Washington. In the course of these investigations, balances that would weigh up to 10.5 mg with a sensitivity of 0.02 microgram were developed. The "test tubes" and "beakers" used had internal diameters of 0.1 to 1 mm and could measure volumes of 1/10 to 1/10,000 ml with an accuracy of 1%. The fact that there was no intermediate stage of experimentation, but a direct scale-up at Hanford of ten billion times, required truly heroic skill and courage. By 1944 sufficient plutonium was available from uranium piles (reactors) so that it was available as target material for cyclotrons. At Berkeley it was bombarded with 32-MeV doubly charged helium ions, and the following reactions took place: {94}Pu<239> ([alpha], n) {96}Cm<242> [alpha] / 150 days --> {94}Pu<238>. This is to be read: plutonium having an atomic number of 94 (94 positively charged protons in the nucleus) and a mass number of 239 (the whole atom weighs approximately 239 times as much as a proton), when bombarded with alpha particles (positively charged helium nuclei) reacts to give off a neutron and a new element, curium, that has atomic number 96 and mass number 242. This gives off alpha particles at such a rate that half of it has decomposed in 150 days, leaving plutonium with atomic number 94 and mass number 238. The radiochemical work leading to the isolation and identification of the atoms of element 96 was done at the metallurgical laboratory of the University of Chicago. The intense neutron flux available in modern reactors led to a new element, americium (Am), as follows: {94}Pu<239> (n, [gamma]) {94}Pu<240> (n, [gamma]) {94}Pu<241> [beta] --> {95}Am<241>. The notation (n, [gamma]) means that the plutonium absorbs a neutron and gives off some energy in the form of gamma rays (very hard x rays); it first forms {94}Pu<240> and then {94}Pu<241>, which is unstable and gives off fast electrons ([beta]), leaving {95}Am<241>. Berkelium and californium, elements 97 and 98, were produced at the University of California by methods analogous to that used for curium, as shown in the following equations: {95}Am<240> + [alpha] --> {97}Bk<243> + {0}n<1>, and {96}Cm<241> + [alpha] --> {98}Cf<244> + {0}n<1>. The next two elements, einsteinium ({99}Es) and fermium ({100}Fm), were originally found in the debris from the thermonuclear device "Mike," which was detonated on Eniwetok atoll November 1952. (This method of creating new substances is somewhat more extravagant than the mythical Chinese method of burning down a building to get a roast pig.) These elements have since been made in nuclear reactors and by bombardment. This time the "bullet" was N<14> stripped of electrons till it had a charge of +6, and the target was plutonium. Researchers at the University of California used new techniques in forming and identifying element 101, mendelevium. A very thin layer of {99}Es<253> was electroplated onto a thin gold foil and was then bombarded, from behind the layer, with 41-MeV [alpha] particles. Unchanged {99}Es<253> stayed on the gold, but those atoms hit by [alpha] particles were knocked off and deposited on a "catcher" gold foil, which was then dissolved and analyzed (Fig. 3). This freed the new element from most of the very reactive parent substances, so that analysis was easier. Even so, the radioactivity was so weak that the new element was identified "one atom at a time"; this is possible because its daughter element, fermium, spontaneously fissions and releases energy in greater bursts than any possible contaminant. [Illustration: Fig. 3. The production of mendelevium.] In 1957, in Stockholm, element 102 was reported found by an international team of scientists (who called it nobelium), but diligent and extensive research failed to duplicate the Stockholm findings. However, a still newer technique developed at Berkeley showed the footprints--if not the living presence--of 102 (see Fig. 4). The rare isotope curium-246 is coated on a small piece of nickel foil, enclosed in a helium-filled container, and placed in the heavy-ion linear accelerator (Hilac) beam. Positively charged atoms of element 102 are knocked off the foil by the beam, which is of carbon-12 or carbon-13 nuclei, and are deposited on a negatively charged conveyor apron. But element 102 doesn't live long enough to be actually measured. As it decays, its daughter product, {100}Fm<250>, is attracted onto a charged aluminum foil where it can be analyzed. The researchers have decided that the hen really did come first: they have the egg; therefore the hen must have existed. By measuring the time distance between target and daughter product, they figure that the hen-mother (element 102) must have a half-life of three seconds. [Illustration: Fig. 4. The experimental arrangement used in the discovery of element 102.] In an experiment completed in 1961, researchers at the University of California at Berkeley unearthed similar "footprints" belonging to element 103 (named lawrencium in honor of Nobel prizewinner Ernest O. Lawrence). They found that the bombardment of californium with boron ions released [alpha] particles which had an energy of 8.6 MeV and decayed with a half-life of 8 ± 2 seconds. These particles can only be produced by element 103, which, according to one scientific theory, is a type of "dinosaur" of matter that died out a few weeks after creation of the universe. The half-life of lawrencium (Lw) is about 8 seconds, and its mass number is thought to be 257, although further research is required to establish this conclusively. Research on lawrencium is complicated. Its total [alpha] activity amounts to barely a few counts per hour. And, since scientists had the [alpha]-particle "footprints" only and not the beast itself, the complications increased. Therefore no direct chemical techniques could be used, and element 103 was the first to be discovered solely by nuclear methods.[A] For many years the periodic system was considered closed at 92. It has now been extended by at least eleven places (Table I), and one of the extensions (plutonium) has been made in truckload lots. Its production and use affect the life of everyone in the United States and most of the world. Surely the end is again in sight, at least for ordinary matter, although persistent scientists may shift their search to the other-world "anti" particles. These, too, will call for very special techniques for detection of their fleeting presence. Early enthusiastic researchers complained that a man's life was not long enough to let him do all the work he would like on an element. The situation has now reached a state of equilibrium; neither man nor element lives long enough to permit all the desired work. [A] In August 1964 Russian scientists claimed that they created element 104 with a half-life of about 0.3 seconds by bombarding plutomium with accelerated neon-22 ions. Table I. THE TRANSURANIUM ELEMENTS ======================================================================== Element Name (Symbol) Mass Year Discovered; by whom; Number where; how ------------------------------------------------------------------------ 93 Neptunium (Np) 238 1940; E. M. McMillan, P. H. Abelson; University of California at Berkeley; slow-neutron bombardment of U<238> in the 60-inch cyclotron. ------------------------------------------------------------------------ 94 Plutonium (Pu) 238 1941; J. W. Kennedy, E. M. McMillan, G. T. Seaborg, and A. C. Wahl; University of California at Berkeley; 16-MeV deuteron bombardment of U<238> in the 60-inch cyclotron. (Pu) 239 Pu<239>; the fissionable isotope of plutonium, was also discovered in 1941 by J. W. Kennedy, G. T. Seaborg, E. Segrè and A. C. Wahl; University of California at Berkeley; slow-neutron bombardment of U<238> in the 60-inch cyclotron. ------------------------------------------------------------------------ 95 Americium (Am) 241 1944-45; Berkeley scientists A. Ghiorso, R. A. James, L. O. Morgan, and G. T. Seaborg at the University of Chicago; intense neutron bombardment of plutonium in nuclear reactors. ------------------------------------------------------------------------ 96 Curium (Cm) 242 1945; Berkeley scientists A. Ghiorso, R. A. James, and G. T. Seaborg at the University of Chicago; bombardment of Pu<239> by 32-MeV helium ions from the 60-inch cyclotron. ------------------------------------------------------------------------ 97 Berkelium (Bk) 243 1949; S. G. Thompson, A. Ghiorso, and G. T. Seaborg; University of California at Berkeley; 35-MeV helium-ion bombardment of Am<241>. ------------------------------------------------------------------------ 98 Californium (Cf) 245 1950; S. G. Thompson, K. Street, A. Ghiorso, G. T. Seaborg; University of California at Berkeley; 35-MeV helium-ion bombardment of Cm<242>. ------------------------------------------------------------------------ 99 Einsteinium (Es) 253 1952-53; A. Ghiorso, S. G. 100 Fermium (Fm) 255 Thompson, G. H. Higgins, G. T. Seaborg, M. H. Studier, P. R. Fields, S. M. Fried, H. Diamond, J. F. Mech, G. L. Pyle, J. R. Huizenga, A. Hirsch, W. M. Manning, C. I. Browne, H. L. Smith, R. W. Spence; "Mike" explosion in South Pacific; work done at University of California at Berkeley, Los Alamos Scientific Laboratory, and Argonne National Laboratory; both elements created by multiple capture of neutrons in uranium of first detonation of a thermonuclear device. The elements were chemically isolated from the debris of the explosion. ------------------------------------------------------------------------ 101 Mendelevium (Md) 256 1955; A. Ghiorso, B. G. Harvey, G. R. Choppin, S. G. Thompson, G. T. Seaborg; University of California at Berkeley; 41-MeV helium-ion bombardment of Es<253> in 60-inch cyclotron. ------------------------------------------------------------------------ 102 Unnamed[B] 254 1958; A. Ghiorso, T. Sikkeland, A. E. Larsh, R. M. Latimer; University of California, Lawrence Radiation Laboratory, Berkeley; 68-MeV carbon-ion bombardment of Cm<246> in heavy-ion linear accelerator (Hilac). ------------------------------------------------------------------------ 103 Lawrencium 257 1961; A. Ghiorso, T. Sikkeland, A. E. Larsh, R. M. Latimer; University of California, Lawrence Radiation Laboratory, Berkeley; 70-MeV boron-ion bombardment of Cf<250>, Cf<251>, and Cf<252> in Hilac. ======================================================================== [B] A 1957 claim for the synthesis and identification of element 102 was accepted at that time by the International Union of Pure and Applied Chemistry, and the name nobelium (symbol No) was adopted. The University of California scientists, A. Ghiorso et al., cited here believe they have disproved the earlier claim and have the right to suggest a different name for the element. End of the Project Gutenberg EBook of A Brief History of Element Discovery, Synthesis, and Analysis, by Glen W. Watson *** END OF THIS PROJECT GUTENBERG EBOOK ELEMENT DISCOVERY *** ***** This file should be named 31624-8.txt or 31624-8.zip ***** This and all associated files of various formats will be found in: http://www.gutenberg.org/3/1/6/2/31624/ Produced by Mark C. Orton, Erica Pfister-Altschul and the Online Distributed Proofreading Team at http://www.pgdp.net Updated editions will replace the previous one--the old editions will be renamed. Creating the works from public domain print editions means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING with public domain eBooks. Redistribution is subject to the trademark license, especially commercial redistribution. *** START: FULL LICENSE *** THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg-tm License (available with this file or online at http://gutenberg.org/license). Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below. 1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is in the public domain in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from the public domain (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm. 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg-tm License. 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1. 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9. 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that - You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation." - You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works. - You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work. - You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works. 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and Michael Hart, the owner of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below. 1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread public domain works in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment. 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. 1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause. Section 2. Information about the Mission of Project Gutenberg-tm Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life. Volunteers and financial support to provide volunteers with the assistance they need, are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation web page at http://www.pglaf.org. Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Its 501(c)(3) letter is posted at http://pglaf.org/fundraising. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws. The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email [email protected]. Email contact links and up to date contact information can be found at the Foundation's web site and official page at http://pglaf.org For additional contact information: Dr. Gregory B. Newby Chief Executive and Director [email protected] Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg-tm depends upon and cannot survive without wide spread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS. The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit http://pglaf.org While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: http://pglaf.org/donate Section 5. General Information About Project Gutenberg-tm electronic works. Professor Michael S. Hart is the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For thirty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support. Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as Public Domain in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition. Most people start at our Web site which has the main PG search facility: http://www.gutenberg.org This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.