
Performance Best Practices for
MongoDB
June 2018

A MongoDB White Paper

Table of Contents
1Introduction

1MongoDB Pluggable Storage Engines

2Hardware

4Application Patterns

7Multi-Document ACID Transactions

7Schema Design & Indexes

9Disk I/O

10Considerations for Benchmarks

11MongoDB Atlas: Database as a Service For MongoDB

12MongoDB Stitch: Backend as a Service

13We Can Help

13Resources

Introduction

MongoDB is designed to meet the demands of modern

apps with a technology foundation that enables you

through:

1. The document data model – presenting you the bestthe best

way to work with datway to work with dataa.

2. A distributed systems design – allowing you to

intelligently put datintelligently put data whera where you want ite you want it.

3. A unified experience that gives you the frfreedom to runeedom to run

anywheranywheree – allowing you to future-proof your work and

eliminate vendor lock-in.

This guide outlines considerations for achieving

performance at scale in a MongoDB system across a

number of key dimensions, including hardware, application

patterns, including multi-document ACID transactions

released in MongoDB 4.0, schema design, and indexing,

disk I/O, Amazon EC2, and designing for benchmarks.

While this guide is broad in scope, it is not exhaustive. You

should refer to MongoDB documentation and consider the

no cost, online training classes offered by MongoDB

University. MongoDB also offers a range of consulting

services to work with you at every stage of your application

lifecycle.

This guide is aimed at users managing MongoDB

themselves. A dedicated guide is provided for users of the

MongoDB database as a service – MongoDB Atlas Best

Practices.

For a discussion on the architecture of MongoDB and

some of its underlying assumptions, see the MongoDB

Architecture Guide. For a discussion on operating a

MongoDB system, see the MongoDB Operations Best

Practices.

MongoDB Pluggable Storage
Engines

MongoDB exposes the storage engine API, enabling the

integration of pluggable storage engines that extend

MongoDB with new capabilities, and enable optimal use of

specific hardware architectures to meet specific workload

1

https://docs.mongodb.com/manual/
https://university.mongodb.com/courses/catalog
https://university.mongodb.com/courses/catalog
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting
https://www.mongodb.com/collateral/mongodb-atlas-best-practices
https://www.mongodb.com/collateral/mongodb-atlas-best-practices
https://www.mongodb.com/collateral/mongodb-architecture-guide
https://www.mongodb.com/collateral/mongodb-architecture-guide
https://www.mongodb.com/collateral/mongodb-operations-best-practices
https://www.mongodb.com/collateral/mongodb-operations-best-practices

requirements. MongoDB ships with multiple supported

storage engines:

• The default WWiriredTedTiger storage engineiger storage engine. For most

applications, WiredTiger's granular concurrency control

and native compression will provide the best all-around

performance and storage efficiency for the broadest

range of applications.

• The Encrypted storage engineEncrypted storage engine, protecting highly

sensitive data, without the performance or management

overhead of separate files system encryption. The

Encrypted storage is based upon WiredTiger and so

throughout this document, statements regarding

WiredTiger also apply to the Encrypted storage engine.

This engine is part of MongoDB Enterprise Advanced.

• The In-Memory storage engineIn-Memory storage engine, delivering predictable

latency coupled with real-time analytics for the most

demanding, applications. This engine is part of

MongoDB Enterprise Advanced.

• The MMMAPMAPv1 storage enginev1 storage engine, which is provided for

backwards compatibility only. This engine is deprecated

with the MongoDB 4.0 release.

Any of these storage engines can coexist within a single

MongoDB replica set, making it easy to evaluate and

migrate between them. WiredTiger is the default storage

engine for MongoDB deployments; if another engine is

preferred then start the mongod using the

--storageEngine option. If a 3.2 (or later) mongod

process is started and one or more databases already exist

then MongoDB will use whichever storage engine those

databases were created with.

While each storage engine is optimized for different

workloads, users still leverage the same MongoDB query

language, data model, scaling, security, and operational

tooling independent of the engine they use. As a result,

most best practices in this guide apply to all of the

supported storage engines. Any differences in

recommendations between the storage engines are noted.

Hardware

You can run MongoDB anywhere – from ARM (64 bit)

processors through to commodity x86 CPUs, all the way

up to IBM POWER and zSeries platforms.

Most users scale out their systems by using many

commodity servers operating together as a cluster.

MongoDB provides native replication to ensure availability;

auto-sharding to uniformly distribute data across servers;

and in-memory computing to provide high performance

without resorting to a separate caching layer. The following

considerations will help you optimize the hardware of your

MongoDB system.

EnsurEnsure your working set fits in RAM.e your working set fits in RAM. As with most

databases, MongoDB performs best when the working set

(indexes and most frequently accessed data) fits in RAM.

RAM size is the most important factor for hardware; other

optimizations may not significantly improve the

performance of the system if there is insufficient RAM. If

your working set exceeds the RAM of a single server,

consider sharding your database across multiple servers.

Use the db.serverStatus() command to view an

estimate of the the current working set size.

Use SUse SSSDs for write-heavy applicDs for write-heavy applications.ations. Most disk

access patterns in MongoDB do not have sequential

properties, and as a result, customers may experience

substantial performance gains by using SSDs. Good

results and strong price to performance have been

observed with SATA, PCIe, and NVMe SSDs. Commodity

SATA spinning drives are comparable to higher cost

spinning drives due to the random access patterns of

MongoDB: rather than spending more on expensive

spinning drives, that money may be more effectively spent

on more RAM or SSDs. Another benefit of using SSDs is

the performance benefit of flash over hard disk drives if the

working set no longer fits in memory.

While data files benefit from SSDs, MongoDB's journal

files are good candidates for fast, conventional disks due

to their high sequential write profile.

Most MongoDB deployments should use RAID-10. RAID-5

and RAID-6 have limitations and may not provide sufficient

performance. RAID-0 provides good read and write

2

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://docs.mongodb.com/manual/core/journaling/
https://docs.mongodb.com/manual/core/journaling/

performance, but insufficient fault tolerance. MongoDB's

replica sets allow deployments to provide stronger

availability for data, and should be considered with RAID

and other factors to meet the desired availability SLA.

ConfigurConfigure compre compression for storage and Iession for storage and I/O/O-intensive-intensive

workloads.workloads. MongoDB natively supports compression

when using the WiredTiger and encrypted storage engines.

Compression reduces storage footprint by as much as

80%, and enables higher IOPs as fewer bits are read from

disk. As with any compression algorithm, administrators

trade storage efficiency for CPU overhead, and so it is

important to test the impacts of compression in your own

environment.

MongoDB offers administrators a range of compression

options for both documents and indexes. The default

Snappy compression algorithm provides a balance

between high document and journal compression ratios

(typically around 70%, dependent on data types) with low

CPU overhead, while the optional zlib library will achieve

higher compression, but incur additional CPU cycles as

data is written to and read from disk. Indexes use prefix

compression by default, which serves to reduce the

in-memory footprint of index storage, freeing up more of

the RAM for frequently accessed documents. Testing has

shown a typical 50% compression ratio using the prefix

algorithm, though users are advised to test with their own

data sets. Administrators can modify the default

compression settings for all collections and indexes.

Compression is also configurable on a per-collection and

per-index basis during collection and index creation.

Combine multiple storage & comprCombine multiple storage & compression types.ession types.

MongoDB provides features to facilitate the management

of data lifecycles, including Time to Live indexes, and

capped collections. In addition, by using MongoDB Zones,

administrators can build highly efficient tiered storage

models to support the data lifecycle. By assigning shards to

Zones, administrators can balance query latency with

storage density and cost by assigning data sets based on a

value such as a timestamp to specific storage devices:

• Recent, frequently accessed data can be assigned to

high performance SSDs with Snappy compression

enabled.

• Older, less frequently accessed data is tagged to

lower-throughput hard disk drives where it is

compressed with zlib to attain maximum storage density

with a lower cost-per-bit.

• As data ages, MongoDB automatically migrates it

between storage tiers, without administrators having to

build tools or ETL processes to manage data

movement.

AllocAllocate CPate CPU harU hardwardware budget for faster CPe budget for faster CPUs.Us.

MongoDB will deliver better performance on faster CPUs,

with the WiredTiger storage engine able to saturate

multi-core processor resources.

DedicDedicate eacate each server to a single rh server to a single role in the system.ole in the system.

For best performance, users should run one mongod

process per host. With appropriate sizing and resource

allocation using virtualization or container technologies,

multiple MongoDB processes can run on a single server

without contending for resources. If using the WiredTiger

storage engine, administrators will need to calculate the

appropriate cache size for each instance by evaluating

what portion of total RAM each of them should use, and

splitting the default cache_size between each.

The size of the WiredTiger cache is tunable through the

storage.wiredTiger.engineConfig.cacheSizeGB

setting and should be large enough to hold your entire

working set. If the cache does not have enough space to

load additional data, WiredTiger evicts pages from the

cache to free up space. By default,

storage.wiredTiger.engineConfig.cacheSizeGB is

set to 60% of available RAM - 1 GB; caution should be

taken if raising the value as it takes resources from the OS,

and WiredTiger performance can actually degrade as the

filesystem cache becomes less effective.

For availability, multiple members of the same replica set

should not be co-located on the same physical hardware or

share any single point of failure such as a power supply.

Use multiple query rUse multiple query routers.outers. Use multiple mongos

processes spread across multiple servers. A common

deployment is to co-locate the mongos process on

application servers, which allows for local communication

between the application and the mongos process. The

appropriate number of mongos processes will depend on

the nature of the application and deployment.

3

https://docs.mongodb.com/manual/core/wiredtiger/#compression
https://docs.mongodb.com/manual/core/wiredtiger/#compression
https://docs.mongodb.com/master/core/zone-sharding/

Exploit multiple corExploit multiple cores.es. The WiredTiger storage engine is

multi-threaded and can take advantage of many CPU

cores. Specifically, the total number of active threads (i.e.

concurrent operations) relative to the number of CPUs can

impact performance:

• Throughput increases as the number of concurrent

active operations increases up to and beyond the

number of CPUs.

• Throughput eventually decreases as the number of

concurrent active operations exceeds the number of

CPUs by some threshold amount.

The threshold amount depends on your application. You

can determine the optimum number of concurrent active

operations for your application by experimenting and

measuring throughput and latency.

Disable NDisable NUUMA,MA, Running MongoDB on a system with

Non-Uniform Access Memory (NUMA) can cause a

number of operational problems, including slow

performance for periods of time and high system process

usage.

When running MongoDB servers and clients on NUMA

hardware, you should configure a memory interleave policy

so that the host behaves in a non-NUMA fashion.

Network ComprNetwork Compression.ession. As a distributed database,

MongoDB relies on efficient network transport during

query routing and inter-node replication. MongoDB 3.4

introduced a new option to compress the wire protocol

used for intra-cluster communications, MongoDB 3.6

extended this to cover compression of network traffic

between the client and the database. Based on the snappy

compression algorithm, network traffic can be compressed

by up to 70%, providing major performance benefits in

bandwidth-constrained environments, and reducing

networking costs.

Compression is off by default, but can be enabled by

setting networkMessageCompressors to snappy.

Compressing and decompressing network traffic requires

CPU resources – typically low single digit percentage

overhead. Compression is ideal for those environments

where performance is bottlenecked by bandwidth, and

sufficient CPU capacity is available.

Application Patterns

MongoDB is an extremely flexible database due to its

dynamic schema and rich query model. The system

provides extensive secondary indexing capabilities to

optimize query performance. Users should consider the

flexibility and sophistication of the system in order to make

the right trade-offs for their application. The following

considerations will help you optimize your application

patterns.

Issue updates to only modify fields that haveIssue updates to only modify fields that have

cchanged.hanged. Rather than retrieving the entire document in

your application, updating fields, then saving the document

back to the database, instead issue the update to specific

fields. This has the advantage of less network usage and

reduced database overhead.

AAvoid negation in queries.void negation in queries. Like most database systems,

MongoDB does not index the absence of values and

negation conditions may require scanning all documents. If

negation is the only condition and it is not selective (for

example, querying an orders table where 99% of the

orders are complete to identify those that have not been

fulfilled), all records will need to be scanned.

Use coverUse covered queries when possible.ed queries when possible. Covered queries

return results from the indexes directly without accessing

documents and are therefore very efficient. For a query to

be covered all the fields included in the query must be

present in an index, and all the fields returned by the query

must also be present in that index. To determine whether a

query is a covered query, use the explain() method. If

the explain() output displays true for the indexOnly

field, the query is covered by an index, and MongoDB

queries only that index to match the query and return the

results.

TTest every query in your applicest every query in your application withation with explain()..

MongoDB provides an explain plan capability that shows

information about how a query will be, or was, resolved,

including:

• The number of documents returned

• The number of documents read

• Which indexes were used

4

https://docs.mongodb.com/manual/core/query-optimization/#covered-query
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/

FigurFigure 1:e 1: MongoDB Compass visual query plan for performance optimization across distributed clusters

• Whether the query was covered, meaning no documents

needed to be read to return results

• Whether an in-memory sort was performed, which

indicates an index would be beneficial

• The number of index entries scanned

• How long the query took to resolve in milliseconds

(when using the executionStats mode)

• Which alternative query plans were rejected (when

using the allPlansExecution mode)

The explain plan will show 0 milliseconds if the query was

resolved in less than 1 ms, which is typical in well-tuned

systems. When the explain plan is called, prior cached

query plans are abandoned, and the process of testing

multiple indexes is repeated to ensure the best possible

plan is used. The query plan can be calculated and

returned without first having to run the query. This enables

DBAs to review which plan will be used to execute the

query, without having to wait for the query to run to

completion.

MongoDB Compass provides the ability to visualize explain

plans, presenting key information on how a query

performed – for example the number of documents

returned, execution time, index usage, and more. Each

stage of the execution pipeline is represented as a node in

a tree, making it simple to view explain plans from queries

distributed across multiple nodes.

Update multiple array elements in a single operation.Update multiple array elements in a single operation.

With fully expressive array updates, developers can perform

complex array manipulations against matching elements of

an array – including elements embedded in nested arrays –

all in a single update operation. Using the arrayFilters

option, the update can specify which elements to modify in

the array field.

AAvoid scvoid scatter-gather queries.atter-gather queries. In sharded systems,

queries that cannot be routed to a single shard must be

broadcast to multiple shards for evaluation. Because these

queries involve multiple shards for each request they do

not scale well as more shards are added.

5

https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
https://www.mongodb.com/products/compass

Choose the apprChoose the appropriate write guarantees.opriate write guarantees. MongoDB

allows administrators to specify the level of persistence

guarantee when issuing writes to the database, which is

called the write concern. The following options can be

configured on a per connection, per database, per

collection, or even per operation basis. The options are as

follows:

• Write Acknowledged: This is the default write concern.

The mongod will confirm the execution of the write

operation, allowing the client to catch network, duplicate

key, Document Validation, and other exceptions.

• Journal Acknowledged: The mongod will confirm the

write operation only after it has flushed the operation to

the journal on the primary. This confirms that the write

operation can survive a mongod crash and ensures that

the write operation is durable on disk.

• Replica Acknowledged: It is also possible to wait for

acknowledgment of writes to other replica set members.

MongoDB supports writing to a specific number of

replicas. This also ensures that the write is written to the

journal on the secondaries. Because replicas can be

deployed across racks within data centers and across

multiple data centers, ensuring writes propagate to

additional replicas can provide extremely robust

durability.

• Majority: This write concern waits for the write to be

applied to a majority of replica set members. This also

ensures that the write is recorded in the journal on

these replicas – including on the primary.

• Data Center Awareness: Using tag sets, sophisticated

policies can be created to ensure data is written to

specific combinations of replicas prior to

acknowledgment of success. For example, you can

create a policy that requires writes to be written to at

least three data centers on two continents, or two

servers across two racks in a specific data center. For

more information see the MongoDB Documentation on

Data Center Awareness.

Choose the right rChoose the right read-concern.ead-concern. To ensure isolation and

consistency, the readConcern can be set to majority to

indicate that data should only be returned to the

application if it has been replicated to a majority of the

nodes in the replica set, and so cannot be rolled back in

the event of a failure.

MongoDB supports a readConcern level of “Linearizable”.

The linearizable read concern ensures that a node is still

the primary member of the replica set at the time of the

read, and that the data it returns will not be rolled back if

another node is subsequently elected as the new primary

member. Configuring this read concern level can have a

significant impact on latency, therefore a maxTimeMS

value should be supplied in order to timeout long running

operations.

Use cUse causal consistency wherausal consistency where needed.e needed. Introduced in

MongoDB 3.6, causal consistency guarantees that every

read operation within a client session will always see the

previous write operation, regardless of which replica is

serving the request. You can minimize any latency impact

by using causal consistency only where it is needed.

Use the most rUse the most recent drivers frecent drivers from MongoDB.om MongoDB.

MongoDB supports drivers for nearly a dozen languages.

These drivers are engineered by the same team that

maintains the database kernel. Drivers are updated more

frequently than the database, typically every two months.

Always use the most recent version of the drivers when

possible. Install native extensions if available for your

language. Join the MongoDB community mailing list to

keep track of updates.

EnsurEnsure uniform distribution of share uniform distribution of shard keys.d keys. When shard

keys are not uniformly distributed for reads and writes,

operations may be limited by the capacity of a single shard.

When shard keys are uniformly distributed, no single shard

will limit the capacity of the system.

Use hash-based sharUse hash-based sharding when apprding when appropriate.opriate. For

applications that issue range-based queries, range-based

sharding is beneficial because operations can be routed to

the fewest shards necessary, usually a single shard.

However, range-based sharding requires a good

understanding of your data and queries, which in some

cases may not be practical. Hash-based sharding ensures

a uniform distribution of reads and writes, but it does not

provide efficient range-based operations.

6

http://docs.mongodb.com/manual/core/replica-set-write-concern/
http://docs.mongodb.com/manual/data-center-awareness/
https://docs.mongodb.com/manual/reference/readConcern/
https://docs.mongodb.com/manual/reference/readConcern/
https://docs.mongodb.com/manual/reference/method/cursor.maxTimeMS/
https://docs.mongodb.com/manual/applications/drivers/index.html
https://groups.google.com/forum/#!forum/mongodb-dev
https://docs.mongodb.com/manual/core/index-hashed/

Multi-Document ACID
Transactions

Because documents can bring together related data that

would otherwise be modelled across separate parent-child

tables in a tabular schema, MongoDB’s atomic

single-document operations provide transaction semantics

that meet the data integrity needs of the majority of

applications. One or more fields may be written in a single

operation, including updates to multiple sub-documents

and elements of an array. The guarantees provided by

MongoDB ensure complete isolation as a document is

updated; any errors cause the operation to roll back so that

clients receive a consistent view of the document.

MongoDB’s existing document atomicity guarantees will

meet 80-90% of an application’s transactional needs. They

remain the recommended way of enforcing your app’s data

integrity requirements

MongoDB 4.0 adds support for multi-document ACID

transactions, making it even easier for developers to

address more use cases with MongoDB. They feel just like

the transactions developers are familiar with from relational

databases – multi-statement, similar syntax, and easy to

add to any application. Through snapshot isolation,

transactions provide a consistent view of data, enforce

all-or-nothing execution, and do not impact performance

for workloads that do not require them. For those

operations that do require multi-document transactions,

there are several best practices that developers should

observe.

Creating long running transactions, or attempting to

perform an excessive number of operations in a single

ACID transaction can result in high pressure on

WiredTiger’s cache. This is because the cache must

maintain state for all subsequent writes since the oldest

snapshot was created. As a transaction always uses the

same snapshot while it is running, new writes accumulate

in the cache throughout the duration of the transaction.

These writes cannot be flushed until transactions currently

running on old snapshots commit or abort, at which time

the transactions release their locks and WiredTiger can

evict the snapshot. To maintain predictable levels of

database performance, developers should therefore

consider the following:

1. By default, MongoDB will automatically abort any

multi-document transaction that runs for more than 60

seconds. Note that if write volumes to the server are

low, you have the flexibility to tune your transactions for

a longer execution time. To address timeouts, the

transaction should be broken into smaller parts that

allow execution within the configured time limit. You

should also ensure your query patterns are properly

optimized with the appropriate index coverage to allow

fast data access within the transaction.

2. There are no hard limits to the number of documents

that can be read within a transaction. As a best practice,

no more than 1,000 documents should be modified

within a transaction. For operations that need to modify

more than 1,000 documents, developers should break

the transaction into separate parts that process

documents in batches.

3. In MongoDB 4.0, a transaction is represented in a

single oplog entry, therefore must be within the 16MB

document size limit. While an update operation only

stores the deltas of the update (i.e., what has changed),

an insert will store the entire document. As a result, the

combination of oplog descriptions for all statements in

the transaction must be less than 16MB. If this limit is

exceeded, the transaction will be aborted and fully rolled

back. The transaction should therefore be decomposed

into a smaller set of operations that can be represented

in 16MB or less.

4. When a transaction aborts, an exception is returned to

the driver and the transaction is fully rolled back.

Developers should add application logic that can catch

and retry a transaction that aborts due to temporary

exceptions, such as a transient network failure or a

primary replica election. With retryable writes, the

MongoDB drivers will automatically retry the commit

statement of the transaction.

You can review all best practices in the MongoDB

documentation for multi-document transactions.

Schema Design & Indexes

MongoDB uses a binary document data model based

called BSON that is based on the JSON standard. Unlike

flat tables in a relational database, MongoDB's document

7

https://docs.mongodb.com/manual/core/retryable-writes/index.html
https://docs.mongodb.com/master/core/transactions/
https://docs.mongodb.com/master/core/transactions/
http://www.bsonspec.org/

data model is closely aligned to the objects used in modern

programming languages, and in most cases it removes the

need for multi-document transactions or joins due to the

advantages of having related data for an entity or object

contained within a single document, rather than spread

across multiple tables. There are best practices for

modeling data as documents, and the right approach will

depend on the goals of your application. The following

considerations will help you make the right choices in

designing the schema and indexes for your application.

AAvoid larvoid large documents.ge documents. The maximum size for

documents in MongoDB is 16 MB. In practice, most

documents are a few kilobytes or less. Consider

documents more like rows in a table than the tables

themselves. Rather than maintaining lists of records in a

single document, instead make each record a document.

For large media items, such as video or images, consider

using GridFS, a convention implemented by all the drivers

that automatically stores the binary data across many

smaller documents.

AAvoid unnecessarily long field names.void unnecessarily long field names. Field names are

repeated across documents and consume space. By using

smaller field names your data will consume less space,

which allows for a larger number of documents to fit in

RAM. Note that with WiredTiger's native compression, long

field names have less of an impact on the amount of disk

space used but the impact on RAM is the same.

Use cUse caution when considering indexes onaution when considering indexes on

low-clow-carardinality fields.dinality fields. Queries on fields with low

cardinality can return large result sets. Avoid returning

large result sets when possible. Compound indexes may

include values with low cardinality, but the value of the

combined fields should exhibit high cardinality.

Eliminate unnecessary indexes.Eliminate unnecessary indexes. Indexes are

resource-intensive: even with compression enabled they

consume RAM, and as fields are updated their associated

indexes must be maintained, incurring additional disk I/O

overhead.

Remove indexes that arRemove indexes that are pre prefixes of other indexes.efixes of other indexes.

Compound indexes can be used for queries on leading

fields within an index. For example, a compound index on

last name, first name can be also used to filter queries that

specify last name only. In this example an additional index

on last name only is unnecessary,

Use a compound index rather than index intersection.Use a compound index rather than index intersection.

For best performance when querying via multiple

predicates, compound indexes will generally be a better

option.

Use partial indexes.Use partial indexes. Reduce the size and performance of

indexes by only including documents that will be accessed

through the index. e.g. Create a partial index on the

orderID field that only includes order documents with an

orderStatus of "In progress", or only index the

emailAddress field for documents where it exists.

AAvoid rvoid regular expregular expressions that aressions that are not left ance not left anchorhoreded

or ror rooted.ooted. Indexes are ordered by value. Leading wildcards

are inefficient and may result in full index scans. Trailing

wildcards can be efficient if there are sufficient

case-sensitive leading characters in the expression.

Use index optimizations available in the WUse index optimizations available in the WiriredTedTigeriger

storage engine.storage engine. As discussed earlier, the WiredTiger

engine compresses indexes by default. In addition,

administrators have the flexibility to place indexes on their

own separate volume, allowing for faster disk paging and

lower contention.

UnderstUnderstand any existing document scand any existing document schema –hema –

MongoDB Compass.MongoDB Compass. If there is an existing MongoDB

database that needs to be understood and optimized then

MongoDB Compass is an invaluable tool.

The MongoDB Compass GUI allows users to understand

the structure of existing data in the database and perform

ad hoc queries against it – all with zero knowledge of

MongoDB's query language. By understanding what kind

of data is present, you're better placed to determine what

indexes might be appropriate.

Without Compass, users wishing to understand the shape

of their data would have to connect to the MongoDB shell

and write queries to reverse engineer the document

structure, field names and data types.

8

http://docs.mongodb.com/manual/core/gridfs/
https://docs.mongodb.com/manual/core/index-partial/

FigurFigure 2:e 2: Document structure and contents exposed by
MongoDB Compass

Ops Manager offers the Data Explorer to examine the

database’s schema by running queries to review document

structure, viewing collection metadata, and inspecting index

usage statistics.

Identify & rIdentify & remove obsolete indexes.emove obsolete indexes. To understand the

effectiveness of the existing indexes being used, an

$indexStats aggregation stage can be used to

determine how frequently each index is used. MongoDB

Compass visualizes index coverage, enabling you to

determine which specific fields are indexed, their type, size,

and how often they are used. Ops Manager includes a

performance advisor which continuously highlights

slow-running queries and provides intelligent index

recommendations to improve performance. Using Ops

Manager automation, the administrator can then roll out the

recommended indexes automatically, without incurring any

application downtime.

Disk I/O

While MongoDB performs all read and write operations

through in-memory data structures, data is persisted to

disk and queries on data not already in RAM trigger a read

from disk. As a result, the performance of the storage

sub-system is a critical aspect of any system. Users should

take care to use high-performance storage and to avoid

networked storage when performance is a primary goal of

the system. The following considerations will help you use

the best storage configuration, including OS and file

system settings.

Readahead size should be set to 0 for WReadahead size should be set to 0 for WiriredTedTigeriger.. Use

the blockdev --setra <value> command to set the

readahead block size to 0 when using the WiredTiger

storage engine. A readahead value of 32 (16 kB) typically

works well when using MMAPv1.

If the readahead size is larger than the size of the data

requested, a larger block will be read from disk – this is

wasteful as most disk I/O in MongoDB is random. This has

two undesirable consequences which negatively effect

performance:

1. The size of the read will consume RAM unnecessarily.

2. More time will be spent reading data than is necessary.

Use XUse XFFS file systems; avoid ES file systems; avoid EXT3.XT3. EXT3 is quite old

and is not optimal for most database workloads. With the

WiredTiger storage engine, use of XFS is strongly

recommended to avoid performance issues that have been

observed when using EXT4 with WiredTiger.

Disable access time settings.Disable access time settings. Most file systems will

maintain metadata for the last time a file was accessed.

While this may be useful for some applications, in a

database it means that the file system will issue a write

every time the database accesses a page, which will

negatively impact the performance and throughput of the

system.

Don't use Huge Pages.Don't use Huge Pages. Do not use Huge Pages virtual

memory pages, MongoDB performs better with normal

virtual memory pages.

Use RAIUse RAID1D10.0. Most MongoDB deployments should use

RAID-10. RAID-5 and RAID-6 have limitations and may

not provide sufficient performance. RAID-0 provides good

read and write performance, but insufficient fault tolerance.

MongoDB's replica sets allow deployments to provide

stronger availability for data, and should be considered with

RAID and other factors to meet the desired availability

SLA.

By using separate storage devices for the journal and data

files you can increase the overall throughput of the disk

subsystem. Because the disk I/O of the journal files tends

to be sequential, SSD may not provide a substantial

9

https://www.mongodb.com/products/ops-manager
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/

improvement and standard spinning disks may be more

cost effective.

Use multiple devices for differUse multiple devices for different datent databases –abases –

WWiriredTedTigeriger.. Set directoryForIndexes so that indexes

are stored in separate directories from collections and

directoryPerDB to use a different directory for each

database. The various directories can then be mapped to

different storage devices, thus increasing overall

throughput.

Note that using different storage devices will affect your

ability to create snapshot-style backups of your data, since

the files will be on different devices and volumes.

• Implement multi-temperaturImplement multi-temperature storage & date storage & dataa

loclocality using MongoDB Zones.ality using MongoDB Zones. MongoDB Zones

allow precise control over where data is physically

stored, accommodating a range of deployment

scenarios – for example by geography, by hardware

configuration, or by application. Administrators can

continuously refine data placement rules by modifying

shard key ranges, and MongoDB will automatically

migrate the data to its new Zone.

Considerations for Benchmarks

Generic benchmarks can be misleading and

misrepresentative of a technology and how well it will

perform for a given application. MongoDB instead

recommends that users model and benchmark their

applications using data, queries, hardware, and other

aspects of the system that are representative of their

intended application. The following considerations will help

you develop benchmarks that are meaningful for your

application.

Model your bencModel your benchmark on your applichmark on your application.ation. The

queries, data, system configurations, and performance

goals you test in a benchmark exercise should reflect the

goals of your production system. Testing assumptions that

do not reflect your production system is likely to produce

misleading results.

CrCreate ceate chunks beforhunks before loading, or use hash-basede loading, or use hash-based

sharsharding.ding. If range queries are part of your benchmark use

range-based sharding and create chunks before loading.

Without pre-splitting, data may be loaded into a shard then

moved to a different shard as the load progresses. By

pre-splitting the data, documents will be loaded in parallel

into the appropriate shards. If your benchmark does not

include range queries, you can use hash-based sharding to

ensure a uniform distribution of writes.

Disable the balancer for bulk loading.Disable the balancer for bulk loading. Prevent the

balancer from rebalancing unnecessarily during bulk loads

to improve performance.

Prime the system for several minutes.Prime the system for several minutes. In a production

MongoDB system the working set should fit in RAM, and

all reads and writes will be executed against RAM.

MongoDB must first page the working set into RAM, so

prime the system with representative queries for several

minutes before running the tests to get an accurate sense

for how MongoDB will perform in production.

Monitor everything to locMonitor everything to locate your bate your bottlenecottlenecks.ks. It is

important to understand the bottleneck for a benchmark.

Depending on many factors any component of the overall

system could be the limiting factor. A variety of popular

tools can be used with MongoDB – many are listed in the

manual.

The most comprehensive tool for monitoring MongoDB is

Ops Manager, available as a part of MongoDB Enterprise

Advanced. Featuring charts, custom dashboards, and

automated alerting, Ops Manager tracks 100+ key

database and systems metrics including operations

counters, memory, and CPU utilization, replication status,

open connections, queues, and any node status. The

metrics are securely reported to Ops Manager where they

are processed, aggregated, alerted, and visualized in a

browser, letting administrators easily determine the health

of MongoDB in real-time. The benefits of Ops Manager are

also available in the SaaS-based Cloud Manager, hosted by

MongoDB in the cloud. Organizations that run on

MongoDB Enterprise Advanced can choose between Ops

Manager and Cloud Manager for their deployments.

10

https://docs.mongodb.com/master/core/zone-sharding/
http://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/
http://docs.mongodb.com/manual/administration/monitoring/
http://docs.mongodb.com/manual/administration/monitoring/
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced

FigurFigure 3:e 3: Ops Manager & Cloud Manager provides real
time visibility into MongoDB performance.

In addition to monitoring, Ops Manager and Cloud Manager

provide automated deployment, upgrades, on-line index

builds, data exporation, and cross-shard on-line backups.

PrProfiling.ofiling. MongoDB provides a profiling capability called

Database Profiler, which logs fine-grained information

about database operations. The profiler can be enabled to

log information for all events or only those events whose

duration exceeds a configurable threshold (whose default

is 100 ms). Profiling data is stored in a capped collection

where it can easily be searched for relevant events. It may

be easier to query this collection than parsing the log files.

MongoDB Ops Manager and Cloud Manager can be used

to visualize output from the profiler when identifying slow

queries.

Ops Manager and Cloud Manager include a Visual Query

Profiler that provides a quick and convenient way for

operations teams and DBAs to analyze specific queries or

query families. The Visual Query Profiler (as shown in

Figure 4) displays how query and write latency varies over

time – making it simple to identify slower queries with

common access patterns and characteristics, as well as

identify any latency spikes. A single click in the Ops

Manager UI activates the profiler, which then consolidates

and displays metrics from every node in a single screen.

FigurFigure 4:e 4: Visual Query Profiling in MongoDB Ops & Cloud
Manager

The Visual Query Profiler will analyze the data –

recommending additional indexes and optionally add them

through an automated, rolling index build.

Ops Manager also offers the performance advisor which

continuously highlights slow-running queries and provides

intelligent index recommendations to improve performance.

Using Ops Manager automation, the administrator can then

roll out the recommended indexes automatically, without

incurring any application downtime.

MongoDB Compass visualizes index coverage, enabling

you to determine which specific fields are indexed, their

type, size, and how often those indexes are used.

Use mongoperf to cUse mongoperf to characterize your storage system.haracterize your storage system.

mongoperf is a free tool that allows users to simulate

direct disk I/O as well as memory mapped I/O, with

configurable options for number of threads, size of

documents, and other factors. This tool can help you to

understand what sort of throughput is possible with your

system, for disk-bound I/O as well as memory-mapped I/

O.

FFollow configuration best practices.ollow configuration best practices. Review the

MongoDB production notes for the latest guidance on

packages, hardware, networking, and operating system

tuning.

MongoDB Atlas: Database as a
Service For MongoDB

An increasing number of companies are moving to the

public cloud to not only reduce the operational overhead of

11

https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://docs.opsmanager.mongodb.com/current/tutorial/performance-advisor/index.html
http://docs.mongodb.com/manual/reference/program/mongoperf/
http://docs.mongodb.com/manual/reference/program/mongoperf/
https://docs.mongodb.com/manual/administration/production-notes/

managing infrastructure, but also provide their teams with

access to on-demand services that give them the agility

they need to meet faster application development cycles.

This move from building IT to consuming IT as a service is

well aligned with parallel organizational shifts including

agile and DevOps methodologies and microservices

architectures. Collectively these seismic shifts in IT help

companies prioritize developer agility, productivity and time

to market.

MongoDB offers the fully managed, on-demand and elastic

MongoDB Atlas service, in the public cloud. Atlas enables

customers to deploy, operate, and scale MongoDB

databases on AWS, Azure, or GCP in just a few clicks or

programmatic API calls. MongoDB Atlas is available

through a pay-as-you-go model and billed on an hourly

basis. It’s easy to get started – use a simple GUI to select

the public cloud provider, region, instance size, and features

you need. MongoDB Atlas provides:

• Automated database and infrastructure provisioning so

teams can get the database resources they need, when

they need them, and can elastically scale whenever they

need to.

• Security features to protect your data, with network

isolation, fine-grained access control, auditing, and

end-to-end encryption, enabling you to comply with

industry regulations such as HIPAA.

• Built in replication both within and across regions for

always-on availability.

• Global clusters allows you to deploy a fully managed,

globally distributed database that provides low latency,

responsive reads and writes to users anywhere, with

strong data placement controls for regulatory

compliance.

• Fully managed, continuous and consistent backups with

point in time recovery to protect against data corruption,

and the ability to query backups in-place without full

restores.

• Fine-grained monitoring and customizable alerts for

comprehensive performance visibility.

• Automated patching and single-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB

features.

• Live migration to move your self-managed MongoDB

clusters into the Atlas service or to move Atlas clusters

between cloud providers.

• Widespread coverage on the major cloud platforms with

availability in over 50 cloud regions across Amazon Web

Services, Microsoft Azure, and Google Cloud Platform.

MongoDB Atlas delivers a consistent experience across

each of the cloud platforms, ensuring developers can

deploy wherever they need to, without compromising

critical functionality or risking lock-in.

MongoDB Atlas can be used for everything from a quick

Proof of Concept, to dev/test/QA environments, to

powering production applications. The user experience

across MongoDB Atlas, Cloud Manager, and Ops Manager

is consistent, ensuring that you easily move from

on-premises to the public cloud, and between providers as

your needs evolve.

Built and run by the same team that engineers the

database, MongoDB Atlas is the best way to run MongoDB

in the cloud. Learn more or deploy a free cluster now.

This paper is aimed at people managing their own

MongoDB instances, performance best practices for

MongoDB Atlas are described in a dedicated paper –

MongoDB Atlas Best Practices.

MongoDB Stitch

The MongoDB Stitch serverless platform facilitates

application development with simple, secure access to data

and services from the client – getting your apps to market

faster while reducing operational costs.

Stitch represents the next stage in the industry's migration

to a more streamlined, managed infrastructure. Virtual

Machines running in public clouds (notably AWS EC2) led

the way, followed by hosted containers, and serverless

offerings such as AWS Lambda and Google Cloud

Functions. These still required backend developers to

implement and manage access controls and REST APIs to

provide access to microservices, public cloud services, and

of course data. Frontend developers were held back by

needing to work with APIs that weren't suited to rich data

queries.

12

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud
https://www.mongodb.com/collateral/mongodb-atlas-best-practices
https://www.mongodb.com/cloud/stitch

The Stitch serverless platform addresses these challenges

by providing four services:

• StitcStitch QueryAnywherh QueryAnywheree. Brings MongoDB's rich query

language safely to the edge. An intuitive SDK provides

full access to your MongoDB database from mobile and

IoT devices. Authentication and declarative or

programmable access rules empower you to control

precisely what data your users and devices can access.

• StitcStitch Fh Functionsunctions. Stitch's HTTP service and webhooks

let you create secure APIs or integrate with

microservices and server-side logic. The same SDK that

accesses your database, also connects you with popular

cloud services, enriching your apps with a single method

call. Your custom, hosted JavaScript functions bring

everything together.

• StitcStitch Th Triggersriggers. Real-time notifications let your

application functions react in response to database

changes, as they happen, without the need for wasteful,

laggy polling.

• StitcStitch Mobile Synch Mobile Sync (coming soon). Automatically

synchronizes data between documents held locally in

MongoDB Mobile and your backend database, helping

resolve any conflicts – even after the mobile device has

been offline.

Whether building a mobile, IoT, or web app from scratch,

adding a new feature to an existing app, safely exposing

your data to new users, or adding service integrations,

Stitch can take the place of your application server and

save you writing thousands of lines of boilerplate code.

We Can Help

We are the MongoDB experts. Over 6,600 organizations

rely on our commercial products. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a serverless platform which accelerates

application development with simple, secure access to data

and services from the client – getting your apps to market

faster while reducing operational costs and effort.

MongoDB Mobile (Beta) MongoDB Mobile lets you store

data where you need it, from IoT, iOS, and Android mobile

devices to your backend – using a single database and

query language.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

13

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/mobile
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2018 MongoDB, Inc. All rights reserved.

14

	Table of Contents
	Introduction1
	MongoDB Pluggable Storage Engines1
	Hardware2
	Application Patterns4
	Multi-Document ACID Transactions7
	Schema Design & Indexes7
	Disk I/O9
	Considerations for Benchmarks10
	MongoDB Atlas: Database as a Service For MongoDB11
	MongoDB Stitch: Backend as a Service12
	We Can Help13
	Resources13
	Introduction
	MongoDB Pluggable Storage Engines
	Hardware
	Application Patterns
	Multi-Document ACID Transactions
	Schema Design & Indexes
	Disk I/O
	Considerations for Benchmarks
	MongoDB Atlas: Database as a Service For MongoDB
	MongoDB Stitch

	We Can Help
	Resources

